三峽庫(kù)區(qū)侏羅系地層推移式滑坡—抗滑樁相互作用研究
本文選題:推移式滑坡 + 演化過(guò)程。 參考:《中國(guó)地質(zhì)大學(xué)》2014年博士論文
【摘要】:滑坡是斜坡破壞類型中分布最廣、危害最大的一種地質(zhì)災(zāi)害,其演化過(guò)程包含了從孕育、發(fā)展直至消亡的整個(gè)周期活動(dòng)。隨著我國(guó)經(jīng)濟(jì)建設(shè)的蓬勃發(fā)展,大批重大基礎(chǔ)設(shè)施建設(shè)實(shí)施過(guò)程將受到滑坡災(zāi)害的嚴(yán)重威脅。因此,亟需對(duì)滑坡治理方法進(jìn)行系統(tǒng)研究,并據(jù)此為工程實(shí)踐提供科學(xué)依據(jù)。 抗滑樁是滑坡治理的主要措施之一,具有抗滑能力強(qiáng)、適用條件廣、施工安全簡(jiǎn)便、能核實(shí)地質(zhì)條件等突出優(yōu)點(diǎn),得到了極為廣泛的應(yīng)用。但目前抗滑樁設(shè)計(jì)的理論方法還不成熟,抗滑樁承載特性、樁-土相互作用機(jī)理以及荷載傳遞規(guī)律等尚未十分明確。為此,深入開(kāi)展抗滑樁與滑坡相互作用研究是當(dāng)前迫切需要解決的應(yīng)用課題之一。 在建立滑坡地質(zhì)力學(xué)分析模型并闡明滑坡基本演化特征的基礎(chǔ)上,結(jié)合三峽庫(kù)區(qū)侏羅系地層巖層結(jié)構(gòu)特征,重點(diǎn)開(kāi)展了基于推移式滑坡-抗滑樁體系演化過(guò)程的樁土相互作用研究,據(jù)此延伸出了相關(guān)抗滑樁優(yōu)化設(shè)計(jì)方法并運(yùn)用于工程案例。取得的主要研究成果如下: (1)基于“三段式”滑動(dòng)模式的力學(xué)模型,對(duì)推移式滑坡與牽引式滑坡的力學(xué)成因機(jī)制進(jìn)行了對(duì)比研究,討論了兩者的差異性。從地形地貌、地層巖性、地質(zhì)構(gòu)造、水文地質(zhì)等方面分析了推移式滑坡的基本形成條件。總結(jié)了三峽庫(kù)區(qū)典型推移式滑坡—新灘滑坡的變形破壞過(guò)程和裂縫配套體系的發(fā)展規(guī)律。從滑坡形態(tài)特征、物質(zhì)組成、結(jié)構(gòu)組成、動(dòng)力因素四個(gè)方面,建立了推移式滑坡概化地質(zhì)力學(xué)模型。提出了模擬漸進(jìn)推移式滑坡演化過(guò)程的推力控制法以及適用于模擬突變推移式滑坡的位移控制法?偨Y(jié)了三峽庫(kù)區(qū)侏羅系地層巖性特征和分布規(guī)律,對(duì)比分析了軟、硬巖層物理力學(xué)性質(zhì)的差異性,提出了軟硬相間巖層概化分析模型。 (2)采用室內(nèi)物理模型試驗(yàn)方法模擬了推移式滑坡的演化過(guò)程。利用三維激光掃描技術(shù)監(jiān)測(cè)滑坡不同演化階段模型表面點(diǎn)云數(shù)據(jù),揭示了滑坡演化規(guī)律和裂縫體系的分期配套特征。根據(jù)坡表代表性監(jiān)測(cè)點(diǎn)位移時(shí)程曲線,采用廣義關(guān)聯(lián)維方法,分析了滑坡演化過(guò)程中多重分形維數(shù)變化規(guī)律,并以此為依據(jù),將推移式滑坡演化過(guò)程劃分為后緣壓縮階段、勻速變形階段、加速變形階段。其中,后緣壓縮階段對(duì)應(yīng)的位移多重分維數(shù)呈降維特征,勻速變形階段時(shí)多重分維數(shù)整體呈先減后增的變化趨勢(shì),加速變形階段多重分維數(shù)表現(xiàn)出增維趨勢(shì)。運(yùn)用數(shù)值模擬方法再現(xiàn)了推移式滑坡的演化過(guò)程,計(jì)算結(jié)果與模型試驗(yàn)結(jié)果基本吻合,驗(yàn)證了推移式滑坡演化過(guò)程的階段性,揭示了滑坡演化過(guò)程中穩(wěn)定性系數(shù)的非線性衰減規(guī)律。 (3)提出了兼顧滑坡自身特征和樁土相互作用的“半模型”試驗(yàn)方法,重點(diǎn)闡述了樁前滑體概化步驟;研發(fā)了一種多工況框架式滑坡地質(zhì)力學(xué)模型輕便試驗(yàn)裝置,利用該裝置可模擬多工況條件下滑坡變形破壞特征與滑坡-抗滑樁相互作用過(guò)程;配套研發(fā)了一種模擬庫(kù)水位升降過(guò)程的試驗(yàn)設(shè)備,可實(shí)現(xiàn)水位波動(dòng)的自動(dòng)化模擬;提供了一種滑坡物理模型試驗(yàn)多場(chǎng)信息監(jiān)測(cè)方法,能實(shí)現(xiàn)滑坡演化過(guò)程中位移場(chǎng)、應(yīng)力場(chǎng)、溫度場(chǎng)多場(chǎng)變化特征的精確測(cè)量;考慮到干擾信號(hào)對(duì)試驗(yàn)監(jiān)測(cè)數(shù)據(jù)的影響,采用LabVIEW程序開(kāi)發(fā)平臺(tái),編程實(shí)現(xiàn)了基于Butterworth低通濾波器的可視化試驗(yàn)數(shù)據(jù)濾波軟件。 (4)通過(guò)物理模型試驗(yàn)方法研究了抗滑樁懸臂段與推移式滑坡相互作用過(guò)程。①抗滑樁改變了滑坡的演化過(guò)程,導(dǎo)致滑坡主要變形階段占整個(gè)演化過(guò)程的比例增大,初始階段比例減小,主要變形階段的增長(zhǎng)量與初始變形階段的縮短量相當(dāng),而破壞變形階段所占比例基本保持不變;主要變形階段,抗滑樁發(fā)揮了加固效果,將加載作用通過(guò)抗滑樁和樁后滑體變形吸收,無(wú)樁條件下則通過(guò)大范圍滑體變形來(lái)吸收推力作用;進(jìn)入破壞變形階段后,樁后滑體達(dá)到了極限承載能力,從樁頂附近剪出破壞,無(wú)法繼續(xù)通過(guò)抗滑樁支擋吸收更大荷載,而未植入抗滑樁的滑坡沿著鼓脹變形前緣輪廓線發(fā)生剪切破壞。②采用三維激光掃描與計(jì)算機(jī)輔助檢測(cè)技術(shù),獲取了坡體表面位移場(chǎng)信息,捕捉到了滑坡演化過(guò)程中產(chǎn)生的土拱效應(yīng)現(xiàn)象。③通過(guò)樁后與樁間不同埋深處的土壓力監(jiān)測(cè)數(shù)據(jù)的分析,得到了應(yīng)力土拱的演化規(guī)律:隨著滑坡后部推力的增大,應(yīng)力土拱的影響范圍擴(kuò)大,在水平方向表現(xiàn)出土拱拱高的增大,在豎直方向上表現(xiàn)出土拱效應(yīng)影響范圍的擴(kuò)展;當(dāng)滑坡由初始變形階段過(guò)渡至主要變形階段時(shí),應(yīng)力土拱空間形態(tài)變化明顯;當(dāng)滑坡由主要變形階段過(guò)渡至破壞變形階段時(shí),應(yīng)力土拱效應(yīng)變化趨勢(shì)不明顯;滑體達(dá)到承載極限后,滑坡模型發(fā)生破壞,土壓力迅速降低,應(yīng)力土拱現(xiàn)象消失。④推移式滑坡演化過(guò)程中,樁后滑坡推力作用點(diǎn)位置是不斷變化的;滑坡推力作用點(diǎn)變化規(guī)律與滑坡的演化階段一一對(duì)應(yīng);推移式滑坡-抗滑樁體系處于初始變形階段時(shí),滑坡推力大小緩慢上升,滑坡推力作用點(diǎn)逐漸上升,相同埋深處抗滑樁受到的水平應(yīng)力值彼此接近;主要變形階段時(shí),滑坡推力呈線性增長(zhǎng)趨勢(shì),滑坡推力作用點(diǎn)逐漸下降;破壞變形階段時(shí),破壞前滑坡推力呈線性增長(zhǎng)趨勢(shì),但增長(zhǎng)速率小于主要變形階段,滑坡推力作用點(diǎn)緩慢下降并趨于恒定。 (5)通過(guò)物理模型試驗(yàn)方法研究了抗滑樁嵌固段與推移式滑坡相互作用過(guò)程。①抗滑樁樁側(cè)土壓力、嵌固段彎矩演化特征呈先增大、后逐漸趨于恒定的變化趨勢(shì)。嵌固段彎矩、樁側(cè)土壓力對(duì)加載響應(yīng)的敏感性隨著距離滑帶埋深的增大而減小。②抗滑樁嵌固段樁前土壓力呈上大下小倒三角形分布規(guī)律;抗滑樁嵌固段樁后土壓力總體較小,樁底附近土壓力較大;抗滑樁懸臂段土壓力分布規(guī)律呈拋物線型分布。相同加載條件下,嵌固段不同埋深處土壓力值變化幅度與滑床巖性有關(guān),以硬巖為主的滑床結(jié)構(gòu)受到的最大土壓力值大于以軟巖為主的滑床結(jié)構(gòu),嵌固段發(fā)生彎曲變形的中心位置也較高。③抗滑樁嵌固段彎矩值總體滿足隨距離滑面埋深增加而減小的變化規(guī)律;相同巖性條件下,嵌固段最大彎矩值隨著巖層傾角的增大而增大;不同巖性條件下,滑帶附近以硬巖為主的滑床結(jié)構(gòu)所對(duì)應(yīng)的嵌固段彎矩值大于以軟巖為主的滑床結(jié)構(gòu)。 (6)樁后滑坡推力分布規(guī)律不僅與滑體介質(zhì)有關(guān),還應(yīng)該由滑坡演化階段、地質(zhì)結(jié)構(gòu)特征、幾何形態(tài)、巖土體性質(zhì)以及抗滑結(jié)構(gòu)的受力變形特征等諸多因素綜合確定;峦屏Ψ植夹螒B(tài)總體滿足拋物線型分布規(guī)律。隨著滑體抗剪強(qiáng)度參數(shù)的增大,滑坡推力逐漸減小,作用點(diǎn)逐漸上升;滑體內(nèi)摩擦角對(duì)滑坡推力分布的影響比粘聚力敏感;懸臂段中上部,樁身受到的水平應(yīng)力與坡角、滑帶厚度呈負(fù)相關(guān)關(guān)系,而與滑面坡度呈正相關(guān)關(guān)系;懸臂段中下部,抗滑樁樁身受到的水平應(yīng)力與坡角、滑帶厚度呈正相關(guān)關(guān)系,而與滑面坡度呈負(fù)相關(guān)關(guān)系;抗滑樁嵌固長(zhǎng)度對(duì)滑坡推力分布規(guī)律的影響較小。滑床巖體結(jié)構(gòu)特征對(duì)抗滑樁嵌固段受力與變形影響顯著:①滑床巖層傾向?yàn)轫槂A向時(shí),巖層傾角對(duì)抗滑樁受力和變形影響顯著,滑床巖層為逆傾向時(shí),影響較;順傾向條件下,隨著傾角的增大,抗滑樁懸臂段和嵌固段受到的內(nèi)力絕對(duì)值呈增大趨勢(shì),樁頂水平位移呈增大趨勢(shì),最大彎矩值點(diǎn)、最大剪力值出現(xiàn)的位置呈下降趨勢(shì),抗滑樁變形范圍逐步擴(kuò)大。②當(dāng)層厚比較大時(shí),抗滑樁受力與變形特征由硬巖控制,軟巖起輔助作用;當(dāng)層厚比較小時(shí),受力特征主要取決于軟巖,硬巖起輔助作用;隨著層厚比的增大,抗滑樁嵌固段承受的最大彎矩絕對(duì)值、最大剪力絕對(duì)值呈增長(zhǎng)趨勢(shì),樁頂位移呈減小趨勢(shì),抗滑樁發(fā)生明顯變形的長(zhǎng)度減小。③巖層厚度相似比越小,抗滑樁嵌固段單位長(zhǎng)度穿越的軟弱層位越多,對(duì)樁身受力和變形影響越大;巖層厚度相似比達(dá)到一定大小后,抗滑樁穿越的硬巖達(dá)到一定層厚,樁身受力與變形特征由硬巖控制。④抗滑樁冗余嵌固長(zhǎng)度隨順傾向巖層傾角的增大而減小,逆傾向巖層的影響不顯著;抗滑樁冗余嵌固長(zhǎng)度隨層厚比w、巖層厚度相似比v的增大而增大,有效嵌固深度則隨之減;當(dāng)層厚比w、巖層厚度相似比v分別增大到一定值后,抗滑樁冗余嵌固長(zhǎng)度趨近均質(zhì)硬巖滑床所對(duì)應(yīng)的冗余嵌固長(zhǎng)度,有效嵌固長(zhǎng)度趨于恒定。 (7)基于彈性力學(xué)理論,建立了樁后滑體應(yīng)力分析模型,得到了不同時(shí)間(演化階段)、不同空間位置、任意樁數(shù)條件下的樁后滑體應(yīng)力分布函數(shù),并由此開(kāi)展了不同樁數(shù)、樁間距、樁截面尺寸下樁后滑體的土拱效應(yīng)研究。探討了該應(yīng)力分布函數(shù)在抗滑樁設(shè)計(jì)中確定最大樁間距的運(yùn)用,以及在物理模型試驗(yàn)中估測(cè)滑體空間應(yīng)力的方法。以滑坡推力及其作用點(diǎn)位置函數(shù)關(guān)系為基礎(chǔ),提出了基于模型試驗(yàn)結(jié)果求解滑坡推力作用位置的方法,據(jù)此計(jì)算得到了更符合抗滑樁真實(shí)受力條件的彎矩值。針對(duì)滑床巖體結(jié)構(gòu)特征,對(duì)傳統(tǒng)線彈性地基系數(shù)法“K”法進(jìn)行了修正,提出了一種軟硬相間滑床巖體結(jié)構(gòu)條件下抗滑樁嵌固段內(nèi)力與位移的計(jì)算方法。該方法中引入了巖層傾角α、層厚比w、巖層厚度相似比v0巖層結(jié)構(gòu)特征參數(shù),屬于抗滑樁嵌固段內(nèi)力、位移計(jì)算的矩陣分析方法。基于極限平衡理論,給出了一種適用于評(píng)價(jià)三峽庫(kù)區(qū)侏羅系復(fù)合層狀巖質(zhì)斜坡穩(wěn)定性的方法及實(shí)現(xiàn)的技術(shù)路線圖。該方法綜合考慮了巖層幾何特征、巖體強(qiáng)度參數(shù)的空間變異性,能求解復(fù)合層狀巖體穩(wěn)定性系數(shù)和搜索最危險(xiǎn)滑動(dòng)面位置。 (8)選擇三峽庫(kù)區(qū)秭歸縣馬家溝滑坡為研究對(duì)象,結(jié)合區(qū)域地質(zhì)環(huán)境背景,在系統(tǒng)總結(jié)研究區(qū)工程地質(zhì)條件的基礎(chǔ)上,進(jìn)行了滑坡穩(wěn)定性評(píng)價(jià)和穩(wěn)定性影響因素分析。以滑坡物理模型試驗(yàn)成果為依據(jù),確定了滑坡推力作用點(diǎn)的區(qū)間范圍。通過(guò)巖層厚度相似比、層厚比、傾角等巖體結(jié)構(gòu)參數(shù),細(xì)化了抗滑樁嵌固段與滑床巖層的接觸關(guān)系。通過(guò)與假設(shè)滑坡推力呈矩形分布、未考慮滑床巖體結(jié)構(gòu)特征的常規(guī)設(shè)計(jì)方法比較,認(rèn)為基于滑坡推力作用點(diǎn)位置和考慮滑床巖層結(jié)構(gòu)特征的優(yōu)化設(shè)計(jì)方法,更能真實(shí)反映抗滑樁懸臂段與嵌固段的受力特征,得到的彎矩和剪力更加合理。對(duì)馬家溝滑坡防治工程而言,抗滑樁常規(guī)設(shè)計(jì)方法與優(yōu)化設(shè)計(jì)方法相比,設(shè)計(jì)方案偏于危險(xiǎn)。 本文的主要?jiǎng)?chuàng)新點(diǎn)是: (1)從滑坡力學(xué)成因機(jī)制出發(fā),建立了推移式滑坡概化地質(zhì)力學(xué)模型,采用室內(nèi)物理模型試驗(yàn)方法模擬了推移式滑坡的演化過(guò)程,揭示了滑坡演化規(guī)律和裂縫體系的分期配套特征,根據(jù)位移多重分形維數(shù)變化規(guī)律,將推移式滑坡演化過(guò)程劃分為后緣壓縮階段、勻速變形階段、加速變形階段。 (2)通過(guò)物理模型試驗(yàn)方法研究了抗滑樁與推移式滑坡相互作用過(guò)程,基于試驗(yàn)多場(chǎng)信息對(duì)比分析了抗滑樁對(duì)滑坡演化過(guò)程的影響。探討了滑坡演化過(guò)程對(duì)抗滑樁受力、變形的影響,揭示了推移式滑坡演化過(guò)程中樁后滑坡推力變化規(guī)律,分析了滑坡推力作用點(diǎn)變化規(guī)律與滑坡演化階段的對(duì)應(yīng)關(guān)系。從理論上詳細(xì)推導(dǎo)了不同演化階段、不同空間位置、任意樁數(shù)條件下樁后滑體應(yīng)力分布函數(shù)。 (3)結(jié)合三峽庫(kù)區(qū)侏羅系軟硬相間巖層特點(diǎn),提出了復(fù)合層狀巖質(zhì)斜坡穩(wěn)定性評(píng)價(jià)方法。從巖層傾角、層厚比、巖層厚度相似比方面系統(tǒng)研究了滑床巖體結(jié)構(gòu)特征對(duì)抗滑樁受力、變形和有效嵌固深度的影響。基于滑坡推力作用點(diǎn)和滑床軟硬相間巖層結(jié)構(gòu)特征,提出的優(yōu)化設(shè)計(jì)方法為抗滑樁設(shè)計(jì)提供了參考依據(jù)。
[Abstract]:Landslide is one of the most widely distributed and most harmful geological hazards in the type of slope failure. Its evolution process includes the whole cycle activity from inoculation, development to extinction. With the vigorous development of China's economic construction, a large number of major infrastructure construction implementation process will be seriously threatened by the landslide disaster. Therefore, it is urgent to control the landslide. Methods a systematic study was carried out to provide scientific basis for engineering practice.
Anti slide pile is one of the main measures for landslide treatment. It has the advantages of strong anti slip ability, wide application conditions, simple construction safety, and can verify geological conditions and so on. It has been widely used. However, the theory method of anti slide pile design is not mature, the bearing specificity of anti slide pile, the interaction mechanism of pile soil and the law of load transfer, and so on. For this reason, it is one of the urgent subjects to study the interaction between anti slide piles and landslides.
On the basis of establishing the landslide geomechanics analysis model and clarifying the basic evolution characteristics of the landslide, combined with the characteristics of the Jurassic strata structure in the Three Gorges Reservoir area, the research on the interaction of pile and soil based on the process of the evolution of the sliding anti slide pile system is carried out, and the optimum design method of the relevant anti slide pile is extended and applied to the engineering. The main research results are as follows:
(1) based on the mechanical model of the "three section" sliding mode, the mechanical mechanism of the lapse landslides and the traction landslides is compared and studied, and the difference between the two is discussed. The basic formation conditions of the lapse landslides are analyzed from the topography, lithology, geological structure and hydrogeology, and the typical push of the Three Gorges Reservoir area is summarized. The deformation and failure process of the moving landslide and the new beach landslide and the law of the development of the supporting system are established. From the four aspects of the characteristics of the landslides, the composition of the material, the composition of the structure and the dynamic factors, the mechanic model of the lapse landslide is established, and the thrust control method is put forward to simulate the evolution process of the progressive slide and the simulation process is suitable for the process of the landslide. The lithologic characteristics and distribution laws of the Jurassic strata in the Three Gorges Reservoir area are summarized, and the differences in physical and mechanical properties of soft and hard rock strata are compared and analyzed. The model of soft and hard interphase rock generalizability analysis is put forward.
(2) the evolution process of the lapse landslide is simulated by the indoor physical model test method. Using the three-dimensional laser scanning technology to monitor the surface point cloud data of the model of the different evolution stages of the landslide, the evolution law of the landslide and the phased matching characteristics of the fracture system are revealed. The generalized correlation dimension is adopted according to the displacement time history curve of the representative monitoring point of the slope surface. The variation of multifractal dimension in the evolution process of the landslide is analyzed. Based on this, the evolution process of the bed load landslide is divided into the post compression stage, the uniform deformation stage and the accelerated deformation stage, in which the multiple fractal dimension of the back edge compression stage is characterized by reducing the dimension of the displacement, and the multifractal dimension is presented as a whole at the uniform deformation stage. The trend of the multifractal dimension in the accelerated deformation stage shows the trend of increasing dimension. The numerical simulation method is used to reproduce the evolution process of the bed load landslide. The calculation results are basically consistent with the model test results, which verifies the stage of the evolution process of the bed load type landslides and uncovers the nonlinear stability coefficient in the process of landslide evolution. Attenuation law.
(3) the "semi model" test method, which takes both the characteristics of landslide itself and the interaction of pile and soil, is put forward, and the general step of the pile front slide is elaborated, and a lightweight test device for the multi working frame type landslide geomechanics model is developed, which can be used to simulate the deformation and failure characteristics of the landslide and the landslide anti slide pile under the condition of multi condition. An experimental equipment is developed to simulate the fluctuation of the water level of the reservoir, and the automatic simulation of the fluctuation of the water level can be realized. A multi field information monitoring method for the landslide physical model test is provided to realize the accurate measurement of the displacement field, the stress field and the temperature field in the landslide evolution process, and the interference letter is taken into consideration. On the influence of the test data, the LabVIEW program development platform is used to realize the visual test data filtering software based on Butterworth low-pass filter.
(4) the interaction process between the cantilever section of the anti slide pile and the sliding landslide is studied by the physical model test. (1) the anti slide pile changes the evolution process of the landslide, which leads to the increase in the proportion of the main deformation stage in the whole evolution process, the decrease in the initial stage ratio, the increase of the main deformation stage and the reduction of the initial deformation phase. In the main deformation stage, the anti slide pile exerts the reinforcement effect and absorbs the load through the deformation of the anti slide pile and the post slide body, and the large range slip body deformation is used to absorb the thrust effect under the condition of no pile, and the post slide body reaches the ultimate bearing energy after the failure stage. Force, cut from the pile top near the top of the pile, can not continue to absorb more load through the anti slide pile support, while the landslide without the anti slide pile is cut along the contour line of the bulging deformation front. Secondly, the three-dimensional laser scanning and computer aided detection technology are used to obtain the information of the displacement field of the slope surface and capture the middle class of the landslide evolution process. Through the analysis of soil pressure monitoring data of different buried depths between post pile and pile, the evolution law of stress soil arch is obtained. With the increase of the thrust of the landslide, the influence range of the stress soil arch is enlarged, the height of the arch arch is increased in the horizontal direction, and the effect of the unearthed arch effect in the vertical direction is influenced by the model. When the landslide is transitioned from the initial deformation stage to the main deformation stage, the spatial shape of the stress soil arch changes obviously. When the landslide is transferred from the main deformation stage to the deformation stage, the change trend of the stress soil arch effect is not obvious; after the sliding body reaches the bearing limit, the sliding slope model breaks down, the soil pressure is rapidly reduced and the stress is stressed. The position of the thrust action point of the landslide is constantly changing in the process of the evolution of the landslide. The change law of the thrust action point of the landslide corresponds to the evolution stage of the landslide, and the thrust size of the landslide is slowly rising and the thrust action point of the landslide gradually rises. The horizontal stress value of the anti slide pile in the same buried depth is close to each other. In the main deformation stage, the landslide thrust shows a linear growth trend, and the thrust action point of the landslide gradually decreases. When the deformation stage is destroyed, the thrust of the landslide is linearly increasing before the failure, but the growth rate is less than the main deformation stage, and the thrust action point of the landslide is slowly decreased. It tends to be constant.
(5) through the physical model test, the interaction process of the sliding pile and the bed load landslide is studied. (1) the lateral earth pressure of the anti slide pile is increased first and then gradually tends to constant. The bending moment of the embedded section, the sensitivity of the soil pressure on the pile side to the loading response is reduced with the increase of the depth of the distance sliding zone. The pressure of soil pressure in the pile foundation of anti slide pile is large and small down triangle distribution law, the soil pressure in the pile bottom is relatively small and the soil pressure near the pile bottom is larger. The distribution law of soil pressure distribution in the cantilever section of anti slide pile is parabolic distribution. Under the same loading condition, the change amplitude of soil pressure value at the different buried depth of the embedded section and the sliding bed The maximum earth pressure of a sliding bed with hard rock mainly is larger than that of a soft rock, and the central position of the bending deformation is higher. Thirdly, the bending moment value of the embedded section of the anti slide pile satisfies the variation rule that decreases with the increase of the buried depth of the sliding surface; the maximum bending moment of the embedded section under the same lithology condition. The value increases with the increase of the rock dip angle. Under different lithologic conditions, the bending moment of the embedded section corresponding to the hard rock in the vicinity of the sliding zone is larger than that of the soft rock.
(6) the distribution law of the landslide thrust is not only related to the sliding medium, but also should be determined by many factors, such as the evolution stage of the landslide, the characteristics of the geological structure, the geometry, the properties of rock and soil, and the deformation characteristics of the anti sliding structure. The distribution pattern of the landslide thrust is generally satisfied with the distribution of the parabolic type. In the middle and upper part of the cantilever section, there is a negative correlation between the horizontal stress of the pile and the thickness of the slope and the slide zone, but the slope of the slide is positively related to the slope of the sliding surface, and the anti slide pile body is subjected to the middle and lower part of the cantilever section. The horizontal stress has a positive correlation with the slope angle and the thickness of the sliding zone, but has a negative correlation with the sliding surface; the impact of the anti slide pile on the distribution of the landslide thrust is smaller. And the influence of deformation is remarkable, and the effect of sliding bed rock is reverse, the absolute value of internal force of the cantilever section and embedded section of anti slide pile is increasing, the horizontal displacement of pile top is increasing, the maximum bending moment value points, the position of the maximum shear value appears downward trend, and the deformation range of anti slide pile will be reduced. When the thickness of the layer is large, the stress and deformation characteristics of the anti slide pile are controlled by hard rock, and the soft rock plays an auxiliary role. When the thickness of the layer is relatively small, the stress characteristics mainly depend on the soft rock and the hard rock plays an auxiliary role. With the increase of the thickness ratio, the absolute value of the maximum bending moment of the anchorage pile is increased, the absolute value of the maximum shear force is on the increase trend. The top displacement is decreasing, and the length of the obvious deformation of the anti slide pile decreases. The smaller the thickness of the rock thickness is, the more weak layers of the block length of the anti slide pile, the greater the influence on the pile force and deformation; after the rock thickness similarity ratio reaches a certain size, the hard rock traversing the anti slide pile reaches a certain thickness and the pile bearing capacity and the bearing capacity. The deformation characteristics are controlled by hard rock. (4) the redundant embedded length of anti slide pile decreases as the inclination of the rock layer tends to increase, and the influence of the reverse inclined rock is not significant. The redundant embedded length of the anti slide pile increases with the thickness ratio of W, the thickness of the rock layer is larger than the V, and the effective embedding depth decreases. When the thickness ratio is w, the thickness of the rock layer is similar to that of V, respectively. After increasing to a certain value, the redundant embedment length of the anti slide pile approaches the redundant embedment length corresponding to the homogeneous hard rock sliding bed, and the effective embedment length tends to be constant.
(7) based on the theory of elastic mechanics, the stress analysis model of pile rear slide is established, and the stress distribution function of post slip body of pile under different time (evolution stage), different space position and arbitrary number of piles is obtained, and the soil arch effect of different pile number, pile spacing and pile cross section post slip body is carried out. The stress distribution function is discussed. The application of the maximum pile spacing in the design of anti slide pile and the method of estimating the spatial stress of the sliding body in the physical model test are given. Based on the relationship between the landslide thrust and the position function of the action point, a method based on the result of the model test is put forward to solve the position of the landslide thrust. The calculation is more in line with the actual resistance of the anti slide pile. In accordance with the structural characteristics of the rock mass, the "K" method of the traditional linear elastic foundation coefficient method is modified. A calculation method for internal force and displacement of the embedded section of the anti slide pile under the condition of the soft and hard interphase sliding bed rock mass is proposed. This method introduces the rock dip angle alpha, the thickness ratio of the layer to W, and the similarity of the rock layer thickness to the V0 rock structure. The characteristic parameter, which belongs to the matrix analysis method of the internal force and displacement calculation of the anti slide pile, is based on the limit equilibrium theory, and gives a method for evaluating the stability of the compound stratified rock slope in the Jurassic of the Three Gorges Reservoir area and its technical roadmap. The method takes into account the geometric characteristics of the rock strata and the spatial variation of the strength parameters of the rock mass. Anisotropy can be used to solve the stability factor and search of composite layered rock mass.
【學(xué)位授予單位】:中國(guó)地質(zhì)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2014
【分類號(hào)】:TV221.2;P642.22
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李迪;張保軍;張漫;;堆積體滑坡滑帶漸近破壞分析[J];地下空間與工程學(xué)報(bào);2007年01期
2 吳景坤;方祁;蔡軍剛;;滑坡識(shí)別及分類專家系統(tǒng)[J];北方交通大學(xué)學(xué)報(bào);1993年01期
3 汪發(fā)武,譚周地;長(zhǎng)江三峽新灘滑坡滑動(dòng)機(jī)制[J];長(zhǎng)春地質(zhì)學(xué)院學(xué)報(bào);1990年04期
4 佴磊,馬麗英,冷曦晨,于清楊;滑坡治理中的抗滑樁設(shè)計(jì)[J];吉林大學(xué)學(xué)報(bào)(地球科學(xué)版);2002年02期
5 鄔愛(ài)清,任放;危崖邊坡變形與破壞形態(tài)的離散元法分析[J];長(zhǎng)江科學(xué)院院報(bào);1993年01期
6 陳Y"熊;;滑坡的基本原理與滑坡類型[J];地質(zhì)知識(shí);1956年04期
7 晏鄂川,劉廣潤(rùn);試論滑坡基本地質(zhì)模型[J];工程地質(zhì)學(xué)報(bào);2004年01期
8 李守定,李曉,張年學(xué),廖秋林;三峽庫(kù)區(qū)侏羅系易滑地層沉積特征及其對(duì)巖石物理力學(xué)性質(zhì)的影響[J];工程地質(zhì)學(xué)報(bào);2004年04期
9 李秀珍;孔紀(jì)名;王震宇;;石榴樹(shù)包滑坡變形監(jiān)測(cè)及演化趨勢(shì)分析[J];工程地質(zhì)學(xué)報(bào);2006年03期
10 劉景儒;吳樹(shù)仁;張永雙;郭常寶;李東林;;金沙江下虎跳滑石板滑坡破壞機(jī)理及穩(wěn)定性分析[J];工程地質(zhì)學(xué)報(bào);2007年02期
相關(guān)博士學(xué)位論文 前9條
1 申永江;邊坡工程中抗滑樁的效果評(píng)價(jià)與優(yōu)化設(shè)計(jì)[D];浙江大學(xué);2009年
2 李長(zhǎng)冬;抗滑樁與滑坡體相互作用機(jī)理及其優(yōu)化研究[D];中國(guó)地質(zhì)大學(xué);2009年
3 李俊;湖南紅層地區(qū)順層巖質(zhì)高陡邊坡穩(wěn)定性及處治技術(shù)研究[D];中南大學(xué);2010年
4 閆金凱;滑坡微型樁防治技術(shù)大型物理模型試驗(yàn)研究[D];長(zhǎng)安大學(xué);2010年
5 李遠(yuǎn)耀;三峽庫(kù)區(qū)漸進(jìn)式庫(kù)岸滑坡的預(yù)測(cè)預(yù)報(bào)研究[D];中國(guó)地質(zhì)大學(xué);2010年
6 馮振;斜傾厚層巖質(zhì)滑坡視向滑動(dòng)機(jī)制研究[D];中國(guó)地質(zhì)科學(xué)院;2012年
7 繆海波;三峽庫(kù)區(qū)侏羅系紅層滑坡變形破壞機(jī)理與預(yù)測(cè)預(yù)報(bào)研究[D];中國(guó)地質(zhì)大學(xué);2012年
8 王輝;拱形抗滑樁墻結(jié)構(gòu)體系工作性能試驗(yàn)研究[D];長(zhǎng)安大學(xué);2011年
9 李尋昌;滑坡與錨桿抗滑樁相互作用的大型物理模型試驗(yàn)研究[D];長(zhǎng)安大學(xué);2011年
,本文編號(hào):1958984
本文鏈接:http://sikaile.net/kejilunwen/shuiwenshuili/1958984.html