天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 水利工程論文 >

雨水花園徑流系數(shù)的率定及影響因素分析

發(fā)布時(shí)間:2018-05-28 08:49

  本文選題:雨水花園 + 徑流系數(shù) ; 參考:《西南交通大學(xué)》2017年碩士論文


【摘要】:城市化進(jìn)程的加快伴隨城鎮(zhèn)道路的建設(shè),使得原有的地形地貌和土壤結(jié)構(gòu)發(fā)生變化,不透水路面增加。同時(shí)隨著極端天氣的頻繁發(fā)生,降雨歷時(shí)短、降雨強(qiáng)度大的局部突發(fā)性暴雨頻繁發(fā)生,嚴(yán)重造成城市內(nèi)澇[1,2]。設(shè)計(jì)滯后是造成城市內(nèi)澇的主要原因,而徑流系數(shù)是估算降雨凈流量的基礎(chǔ)資料,也是進(jìn)行雨水設(shè)計(jì)流量計(jì)算的重要參數(shù)[3]。現(xiàn)在雨水管網(wǎng)設(shè)計(jì)中徑流系數(shù)的取值,主要參考《室外排水設(shè)計(jì)規(guī)范》(GB50014-2006)和《建筑給排水設(shè)計(jì)規(guī)范》(GB50015-2003)中的規(guī)定[4],而設(shè)計(jì)規(guī)范規(guī)定的徑流系數(shù)是按地面覆蓋種類(lèi)確定的經(jīng)驗(yàn)數(shù)值,并沒(méi)有從工程實(shí)際角度出發(fā),把降雨歷時(shí)、降雨強(qiáng)度、地貌等因素考慮進(jìn)去。本課題以成都市新津縣雨水花園試驗(yàn)基地為研究對(duì)象,將修建了雨水花園的2#路和未建雨水花園的18#路作對(duì)比研究,收集試驗(yàn)區(qū)域和試驗(yàn)期間的降雨資料,分析試驗(yàn)期間的降雨類(lèi)型、降雨量、降雨歷時(shí)以及降雨強(qiáng)度等,采用水量平衡原理和等流時(shí)線(xiàn)法對(duì)整個(gè)降雨-產(chǎn)流-匯流過(guò)程進(jìn)行分析,結(jié)合兩條道路監(jiān)測(cè)的出流流量進(jìn)行最優(yōu)擬合,率定試驗(yàn)區(qū)域的徑流系數(shù),分析其影響因素,為實(shí)際工程建設(shè)中排水管網(wǎng)的設(shè)計(jì)提供設(shè)計(jì)參數(shù),為城市內(nèi)澇控制理論研究、實(shí)際工程設(shè)計(jì)應(yīng)用提供理論參考。課題研究成果顯示,試驗(yàn)期間采集的降雨數(shù)據(jù)覆蓋多種雨型,存在不同的降雨強(qiáng)度、降雨歷時(shí),試驗(yàn)區(qū)域涉及四種不同的下墊面,主要為瀝青車(chē)行路面、人行道、綠化隔離帶、原始坡地。以上因素均對(duì)試驗(yàn)區(qū)域的徑流系數(shù)產(chǎn)生影響。通過(guò)9月5日這天的降雨量和出流量率定得到的2#路和18#道路的徑流系數(shù)可知,建有雨水花園的2#路的徑流系數(shù)遠(yuǎn)小于18#路的徑流系數(shù),說(shuō)明建有雨水花園的道路相對(duì)于未建雨水花園的道路具有更好的雨洪調(diào)控作用,對(duì)控制城市內(nèi)澇有積極意義;同時(shí)對(duì)有效降雨期間率定得到的徑流系數(shù)值分析可知,不同的下墊面徑流系數(shù)不同,在試驗(yàn)區(qū)域表現(xiàn)為瀝青道路徑流系數(shù)、人行道路面徑流系數(shù)綠地、坡地路面徑流系數(shù)的總體趨勢(shì),綠地和坡地對(duì)降雨有較強(qiáng)的滯留作用;同樣的下墊面,徑流系數(shù)受到降雨量、降雨歷時(shí)和降雨強(qiáng)度等因素的影響,徑流系數(shù)和降雨歷時(shí)和降雨強(qiáng)度呈正相關(guān)關(guān)系,隨降雨歷時(shí)的延長(zhǎng)而增大,隨降雨強(qiáng)度的增大而增大。研究率定得到的徑流系數(shù)與設(shè)計(jì)規(guī)范中的徑流系數(shù)取值相比有一定的差異,這說(shuō)明實(shí)際的地域環(huán)境徑流系數(shù)受影響因素復(fù)雜,波動(dòng)較大,在進(jìn)行工程設(shè)計(jì)時(shí)需要因地制宜,綜合考慮[4]。
[Abstract]:Along with the construction of urban roads, the acceleration of urbanization makes the original landform and soil structure change, and the impermeable pavement increases. At the same time, with the frequent occurrence of extreme weather, the rainfall duration is short, and the local sudden rainstorm with large rainfall intensity occurs frequently, causing serious urban waterlogging. The design lag is the main cause of urban waterlogging, and the runoff coefficient is the basic data for estimating the rainfall net flow, and is also an important parameter for the calculation of the Rain Water design flow [3]. At present, the value of runoff coefficient in the design of rainwater pipe network is mainly referred to the provisions in "Outdoor drainage Design Code" (GB50014-2006) and "Building Water supply and drainage Design Code" (GB50015-2003) [4], while the runoff coefficient specified in the design code is the empirical value determined according to the type of ground cover. The factors of rainfall duration, rainfall intensity, geomorphology and so on are not taken into account from the point of view of engineering practice. Taking the Rain Water Garden Experimental Base in Xinjin County of Chengdu as the research object, the paper makes a comparative study of the Rain Water Garden's 2# Road and the 18 # Road without the Rain Water Garden, and collects the rainfall data of the experimental area and the trial period. The rainfall types, rainfall, rainfall duration and rainfall intensity during the experiment are analyzed. The whole process of rainfall, runoff generation and runoff concentration is analyzed by using the principle of water balance and the isochron method. Combined with the optimal fitting of the discharge of the two roads, the runoff coefficient of the test area is determined, and the influencing factors are analyzed, which can provide design parameters for the design of the drainage pipe network in practical engineering construction, and provide theoretical research for the control of urban waterlogging. The practical engineering design application provides the theory reference. The research results show that the rainfall data collected during the test period cover a variety of rain patterns, and there are different rainfall intensity and duration. The test area involves four different underlying surfaces, mainly asphalt vehicle pavement, sidewalk, and green separation zone. The original slope. All the above factors have an effect on the runoff coefficient of the test area. Based on the runoff coefficients obtained from the rainfall and discharge rate of September 5, the runoff coefficients of the road with Rain Water garden are much smaller than those of the road 18#, and the runoff coefficient of the road 18 # is far less than that of the road 18 #. It shows that the road with Rain Water garden has better rain and flood control function than the road without Rain Water garden, and has positive significance in controlling urban waterlogging, meanwhile, the analysis of runoff coefficient value obtained from the rate of effective rainfall period shows that, The runoff coefficient of different underlying surface is different. In the test area, the runoff coefficient of asphalt road, pavement, the general trend of runoff coefficient of sloping land and the effect of green land and slope land on rainfall retention are shown. In the same underlying surface, the runoff coefficient is affected by rainfall, rainfall duration and rainfall intensity, and the runoff coefficient is positively correlated with rainfall intensity, and increases with the increase of rainfall duration. It increases with the increase of rainfall intensity. The runoff coefficient determined by the research rate is different from the runoff coefficient value in the design code, which indicates that the actual regional environmental runoff coefficient is affected by complex factors and fluctuates greatly, so it is necessary to take measures according to the local conditions in the engineering design. Comprehensive consideration [4].
【學(xué)位授予單位】:西南交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:P333.1

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 陳克勤;喬麗巍;;關(guān)于區(qū)域綜合徑流系數(shù)計(jì)算及標(biāo)準(zhǔn)值的評(píng)價(jià)[J];黑龍江科技信息;2003年02期

2 吳植寧;;西非地區(qū)小流域谷地暴雨徑流系數(shù)計(jì)算[J];上海水利;1992年03期

3 吳景霞;劉超;鄭曉龍;;模擬降雨條件下徑流系數(shù)預(yù)測(cè)模型的構(gòu)建[J];水利水運(yùn)工程學(xué)報(bào);2008年03期

4 白清俊,董樹(shù)亭,范世香,任淑霞;小流域集水效率的徑流系數(shù)算法[J];山東農(nóng)業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版);2004年03期

5 李建柱;馮平;李紹飛;;洪水徑流系數(shù)的尺度效應(yīng)研究[J];自然災(zāi)害學(xué)報(bào);2011年01期

6 何艷虎;陳曉宏;林凱榮;吳孝情;李艷;;東江流域近50年徑流系數(shù)時(shí)空變化特征[J];地理研究;2014年06期

7 張淑賢;;九龍鎮(zhèn)徑流系數(shù)Ψ值分析與研究[J];中國(guó)水運(yùn)(下半月);2013年10期

8 孫明;;平原區(qū)天然降雨極值強(qiáng)度與徑流系數(shù)的關(guān)系研究[J];海河水利;2006年06期

9 柯曉新;楊興國(guó);張旭東;彭素琴;;甘肅中部集水觀(guān)測(cè)試驗(yàn)研究[J];水科學(xué)進(jìn)展;1996年02期

10 胡關(guān)東;王東升;戴明龍;;滇中徑流系數(shù)變化趨勢(shì)及突變分析[J];人民長(zhǎng)江;2013年S1期

相關(guān)碩士學(xué)位論文 前5條

1 杜長(zhǎng)偉;建筑小區(qū)雨水利用相關(guān)參數(shù)的研究[D];北京建筑大學(xué);2013年

2 胡振龍;山地城市典型下墊面徑流系數(shù)研究[D];重慶大學(xué);2016年

3 李婭;雨水花園徑流系數(shù)的率定及影響因素分析[D];西南交通大學(xué);2017年

4 梁于婷;降雨徑流系數(shù)影響因素的試驗(yàn)研究[D];湖南大學(xué);2014年

5 孔花;山地城市綠地和水泥道路徑流系數(shù)的研究[D];重慶大學(xué);2012年

,

本文編號(hào):1946071

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/shuiwenshuili/1946071.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶(hù)94f31***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com