錦屏一級水電站左岸邊坡大規(guī)模開挖的地質(zhì)—力學響應研究
本文選題:高邊坡 + 地應力 ; 參考:《成都理工大學》2014年博士論文
【摘要】:五百米級、數(shù)百萬方的大規(guī)模巖石高邊坡開挖及其變形響應是大型水電工程建設面臨的重大工程問題。本文通過開挖期的施工地質(zhì)編錄、原位試驗等最新工作,詳細復核了錦屏一級工程左岸邊坡巖體結(jié)構(gòu)特征、巖體質(zhì)量及參數(shù)特征;谶吰赂黝惤Y(jié)構(gòu)面的控制作用,分析了邊坡變形及穩(wěn)定的控制性邊界條件。全面調(diào)查了邊坡開挖變形跡象;結(jié)合開挖過程和邊坡結(jié)構(gòu),深入分析了不同深度及重點部位的監(jiān)測數(shù)據(jù);總結(jié)了本例巖石高邊坡研究對象在大規(guī)模開挖條件下,其開挖變形的地質(zhì)-力學響應機制及規(guī)律。針對變形主體部位,進行了系統(tǒng)的SIGMA/W開挖模擬分析,探討了邊坡開挖變形基本背景、控制作用及過程,變形性質(zhì)及穩(wěn)定性態(tài)勢。論文取得了以下主要研究成果: (1)工程區(qū)所在的斷塊區(qū)域穩(wěn)定性相對較好,現(xiàn)今構(gòu)造應力場總體為NW向,屬于低圍壓、低應變能的能量累計狀態(tài);而與之相鄰的大型活斷裂—安寧河斷裂—活動性水平較高,其正趨成熟的“地震空區(qū)”NW邊緣即在壩址區(qū)一帶,因此應重視其活動性變化將帶來的影響。 (2)根據(jù)結(jié)構(gòu)面與坡面的交切關系,詮釋了結(jié)構(gòu)面跡線側(cè)伏規(guī)律,并應用于地質(zhì)編錄,資料校核之中,保障了巖體結(jié)構(gòu)調(diào)查的可靠性。通過調(diào)查表明:邊坡主體部分(壩頭及以上)巖體結(jié)構(gòu)條件及質(zhì)量存在上部偏差、下部相對更好的特征;與前期勘探認識總體一致,但f42-9斷層沿線呈現(xiàn)斷層密集發(fā)育的軟弱巖帶顯然弱化了其主控性作用。 (3)通過開挖期巖體原位試驗、波數(shù)檢測等手段獲得的最新成果表明:左岸邊坡各級巖體變形及強度參數(shù)的初步建議值是合理可信的;為后續(xù)的數(shù)值模擬分析的參數(shù)選取提供了指導性原則。 (4)所揭示的開挖變形響應可歸納為四種性質(zhì),即卸荷回彈、差異回彈、傾倒-張裂、深部滑移-張裂等變形破裂現(xiàn)象,以淺表卸荷回彈松弛為主。這些直觀的變形跡象主要發(fā)育在坡體內(nèi)部、而坡表不發(fā)育,顯示變形性質(zhì)尚屬邊坡自適應調(diào)整態(tài)勢,并無局部惡化狀況。 (5)邊坡開挖主體的變形受坡體宏觀結(jié)構(gòu)的控制作用明顯:多點位移計孔口變形明顯者、硐室結(jié)構(gòu)裂紋集中者,都主要集中在壩頭拉裂部位;錨索測力計顯示的錨固力增加部位,往往也在煌斑巖脈(X)、f42-9斷層等主控帶的露頭附近。 (6)系統(tǒng)監(jiān)測分析表明,開口線部位的位移矢量大致平行地表、量級100mm左右;開挖區(qū)坡體的變形,以水平橫河向位移為主導分量,垂向上多以沉降為主,但量值很小,表現(xiàn)出不均勻壓縮特征;坡體深部變形主要集中在煌斑巖脈X以內(nèi)的深裂部位,獲得的側(cè)向位移40mm,模擬結(jié)果顯示垂向上為沉降位變形?傮w上,邊坡開挖變形動態(tài)對開挖過程、進度響應密切,趨面性、波動性、階段性、節(jié)奏性同步特征明顯;開挖對上方坡體變形的影響,在100m高差以內(nèi)強烈,在200-300m以內(nèi)影響逐漸減弱,以后(尤其挖完后)便趨于穩(wěn)定。 (7)根據(jù)變形現(xiàn)象認識、監(jiān)測數(shù)據(jù)反饋和支護工況分析,邊坡開挖整體變形的概念模式可總結(jié)為一種“巖錨墻底部壓縮、上部傾倒鼓脹—深部滑移張裂”的復合模式,進一步的數(shù)值模擬分析表明,該模式能夠很好地銜接各部位變形現(xiàn)象。 (8)綜上可得,錦屏一級左岸巖石高邊坡的開挖變形系“大開挖+強支護”條件下受f42-9斷層等壩頭特定地質(zhì)結(jié)構(gòu)控制的一種變形自適應調(diào)整響應;而導致其深部變形的基本背景在于坡體結(jié)構(gòu)條件和應力調(diào)整作用,即f42-9斷層本身規(guī)模大、控制的范圍深,再者就是大規(guī)模開挖后應力的強烈分異。三層抗剪洞及系統(tǒng)錨索形成的巖錨墻則是控制開挖變形及穩(wěn)定的基本作用,實際數(shù)據(jù)證實,這存在一個“抗剪洞起效→垂向壓縮-側(cè)向膨脹→深部擴展”的調(diào)和過程。 (9)據(jù)上述判斷,從控制施工期邊坡變形及穩(wěn)定角度看,實施的支護量是足夠的、邊坡保持穩(wěn)定。
[Abstract]:The excavation and deformation response of large scale rock high slope with five hundred meters, large scale rock slope and its deformation response are important engineering problems in the construction of large hydropower project. In this paper, the rock mass structure characteristics, rock mass quality and parameter characteristics of the left bank slope of Jinping first grade project are reviewed in detail through the construction geological cataloging of excavation and the latest work in situ test. In the control of the various structural surfaces of the slope, the control boundary conditions of the slope deformation and stability are analyzed. The evidence of the deformation of the slope is fully investigated. The monitoring data of the different depths and key parts are deeply analyzed with the excavation process and the slope structure, and the large-scale excavation conditions of this rock rock high slope are summarized. At the same time, the geological mechanics response mechanism and laws of the excavation deformation are carried out. According to the main parts of the deformation, the simulation analysis of SIGMA/W excavation is carried out. The basic background, the control and process, the deformation properties and the stability situation of the slope excavation are discussed. The following main research results are obtained.
(1) the fault block area in the engineering area is relatively good, and the present tectonic stress field is generally NW direction, which belongs to low confining pressure and low strain energy accumulative state, and the large active fault adjacent to the Anning River fracture activity level is high, and its mature "ground earthquake space" NW edge is in the dam site area, therefore should be weighed. The impact of its activity changes.
(2) according to the intersecting relationship between the structure surface and the slope surface, the regularity of the side of the structural plane is interpreted and applied to the geological cataloguing and the data checking to ensure the reliability of the investigation of the rock mass structure. The early exploration knowledge is generally consistent, but the weak rock belt with dense faults developed along the f42-9 fault obviously weakened its main controlling role.
(3) the latest results obtained by the excavation in situ test and wave number detection show that the initial suggested values of the deformation and strength parameters of the rock mass at all levels in the left bank slope are reasonable and credible, and provide a guiding principle for the parameters selection of the subsequent numerical simulation analysis.
(4) the excavation deformation response can be summarized as four kinds of properties, that is, unloading springback, difference springback, toppling tensioned and deep slip tensioned crack and other deformation rupture phenomena, which are mainly shallow surface unloading and springback relaxation. These visual deformation signs are mainly developed in the slope body, but the slope surface is not developed, which shows that the deformation property is still the adaptive adjustment state of the slope. There is no local deterioration.
(5) the deformation of the main body of the slope excavation is obviously controlled by the macro structure of the slope body: those with obvious deformation of the multi point displacement meter are mainly concentrated in the part of the crack in the head of the dam, and the anchorage increase part of the anchor cable dynamometer is often near the outcrop of the main control belt, such as the X, f42-9 fault and so on.
(6) the system monitoring analysis shows that the displacement vector of the opening line is approximately parallel to the earth's surface, and the magnitude of the slope is about 100mm. The deformation of the slope in the excavation area is dominated by the horizontal Henghe direction displacement and mainly in the vertical direction, but the quantity is very small, and the deformation is not uniform. The deep slope deformation is mainly concentrated in the depth of the X of the porphyry vein. The lateral displacement 40mm is obtained, and the simulation results show the vertical deformation of the settlement position. In general, the dynamic response of the slope excavation is close to the process of excavation, the characteristics of the surface, the volatility, the stage and the rhythm of the slope are obvious; the influence of the excavation on the deformation of the upper slope is strong within the height of the 100m, and the effect is within 200-300m. Gradually diminished, and later (especially after digging) stabilized.
(7) according to the understanding of the deformation phenomenon, the monitoring data feedback and the support condition analysis, the conceptual model of the whole deformation of the slope excavation can be summed up as a compound model of "the bottom compression of the rock anchor wall, the upper tipping bulging and deep slip tension", and the further numerical simulation shows that the model can well connect the deformation phenomena of various parts.
(8) the excavation deformation of the high rock slope on the left bank of the first grade of Jinping is a kind of adaptive adjustment response controlled by the specific geological structure of the f42-9 fault and other dam head under the condition of "large excavation + strong support", and the basic background of its deep deformation is the structure of the slope and the stress adjustment, that is, the scale of the f42-9 fault itself. The scope of the control is deep, which is the strong differentiation of stress after large-scale excavation. The rock anchor wall formed by three layers of shear holes and system anchorage cables is the basic function to control the deformation and stability of the excavation. The actual data confirm that there is a harmonization process of "shear hole starting effect, vertical compression lateral expansion, deep expansion".
(9) according to the above judgment, from the angle of controlling slope deformation and stability during construction period, the support amount is enough, and the slope is stable.
【學位授予單位】:成都理工大學
【學位級別】:博士
【學位授予年份】:2014
【分類號】:TV223
【參考文獻】
相關期刊論文 前10條
1 廖忠禮,鄧永福,廖光宇;四川錦屏地區(qū)新生代沖斷作用[J];大地構(gòu)造與成礦學;2003年02期
2 張希;張四新;王雙緒;張曉亮;陸明勇;王文萍;;川滇地區(qū)近期地殼運動的應變積累[J];大地測量與地球動力學;2007年04期
3 張清明;冷元寶;楊磊;徐帥;;工程勘察中激光三維掃描和建模技術(shù)研究[J];地球物理學進展;2009年03期
4 易桂喜;聞學澤;蘇有錦;;川滇活動地塊東邊界強震危險性研究[J];地球物理學報;2008年06期
5 黃潤秋;中國西南巖石高邊坡的主要特征及其演化[J];地球科學進展;2005年03期
6 王琪,張培震,馬宗晉;中國大陸現(xiàn)今構(gòu)造變形GPS觀測數(shù)據(jù)與速度場[J];地學前緣;2002年02期
7 汪一鵬,沈軍,王琪,熊熊;川滇塊體的側(cè)向擠出問題[J];地學前緣;2003年S1期
8 田玉中,李攀峰;兩種典型河谷應力場應力分布特征對比分析[J];地質(zhì)災害與環(huán)境保護;2002年03期
9 董秀軍;;三維激光掃描技術(shù)獲取高精度DTM的應用研究[J];工程地質(zhì)學報;2007年03期
10 霍俊杰;Reidar Lovlie;董秀軍;;3D激光掃描工藝與錦屏Ⅰ級水電工程右岸建基面綠片巖實測跡長分布研究[J];工程地質(zhì)學報;2010年05期
相關博士學位論文 前2條
1 李聰;邊坡變形與穩(wěn)定性演化預測預警方法研究[D];武漢大學;2011年
2 張文居;基于典型岸坡深部裂縫的巖石力學試驗研究[D];成都理工大學;2009年
,本文編號:1906169
本文鏈接:http://sikaile.net/kejilunwen/shuiwenshuili/1906169.html