天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 水利工程論文 >

利用水庫大容量非調(diào)制氣槍陣列進(jìn)行區(qū)域尺度地下結(jié)構(gòu)探測和監(jiān)測

發(fā)布時間:2018-05-18 00:14

  本文選題:區(qū)域尺度 + 主動探測; 參考:《中國地震局地球物理研究所》2014年博士論文


【摘要】:大量的地震學(xué)證據(jù)表明地震的發(fā)生與深部的結(jié)構(gòu)密切相關(guān)。除去與地下結(jié)構(gòu)相關(guān),地震的發(fā)生更重要的是與地下的結(jié)構(gòu)和狀態(tài)的變化有關(guān)。地震通常被認(rèn)為是由于地下應(yīng)力的積累和釋放造成的,因此應(yīng)力狀態(tài)及其變化是地震發(fā)生的關(guān)鍵因素。如果我們能夠?qū)Φ卣鹞kU區(qū)(例如斷層帶、各級速度塊體的邊界以及高低速層的過渡帶)地下的應(yīng)力狀態(tài)進(jìn)行連續(xù)監(jiān)測,將會有助于我們判斷這個地區(qū)發(fā)生地震災(zāi)害的危險性。但是我們并沒有方法能夠?qū)ι畈吭姓饏^(qū)的應(yīng)力狀態(tài)進(jìn)行直接測量,室內(nèi)巖石物理實驗表明巖石的波速會隨著加載壓力的變化而變化(聲彈性),因此我們就可以通過測量穿過深部孕震區(qū)的地震波的波速的變化來監(jiān)測地下應(yīng)力的變化。對區(qū)域尺度深部結(jié)構(gòu)的探測和監(jiān)測還不只是減輕地震等自然災(zāi)害的需要,而且也是開發(fā)開采油氣礦產(chǎn)資源的需要。 為了進(jìn)行區(qū)域尺度地下結(jié)構(gòu)的探測和監(jiān)測,我們采用兩種震源:水庫大容量非調(diào)制氣槍陣列震源和背景噪聲震源。首先是水庫大容量非調(diào)制氣槍陣列的方法。由于通常用于區(qū)域尺度地下結(jié)構(gòu)探測的天然地震方法存在空間和時間上的局限性以及地震定位精度差的問題,而通常用于區(qū)域尺度地下結(jié)構(gòu)探測的炸藥等人工震源方法又存在破壞環(huán)境重復(fù)性差等問題,都不是特別適合區(qū)域尺度地下結(jié)構(gòu)的探測和監(jiān)測。為此,我們實驗室一直在探索新的區(qū)域尺度地下結(jié)構(gòu)探測和監(jiān)測的方法。我們實驗室通過多次試驗發(fā)現(xiàn)水庫大容量非調(diào)制氣槍陣列具有頻率低、傳播距離遠(yuǎn)、重復(fù)性好以及對環(huán)境無破壞等特點(diǎn),非常適合陸地區(qū)域尺度地下結(jié)構(gòu)的探測和監(jiān)測。 對于震源的認(rèn)識是進(jìn)行結(jié)構(gòu)及其變化探測研究的第一步。由于水庫大容量非調(diào)制氣槍陣列是在陸地水庫中進(jìn)行激發(fā),相比于在海洋中進(jìn)行激發(fā)的氣槍陣列,陸地水庫水域面積更小,水深更淺,氣槍陣列與水庫的相互作用更為復(fù)雜,氣槍陣列與陸地水庫共同構(gòu)成了一個震源系統(tǒng)。目前對于這種震源系統(tǒng)的研究還很少。我們根據(jù)Rayleigh-Plesset氣泡震蕩方程以及流體中的動量方程和連續(xù)性方程,構(gòu)建了一個適用于遠(yuǎn)場氣槍地震信號的作用于液固界面的單力震源模型。 之后我們介紹了水庫大容量非調(diào)制氣槍陣列在區(qū)域尺度地下波速變化監(jiān)測中的應(yīng)用。為了對地震頻發(fā)的滇西地區(qū),特別是位于其中的紅河和程海兩大斷裂帶地下的波速變化進(jìn)行監(jiān)測,利用水庫大容量非調(diào)制氣槍陣列,我們實驗室于2011年4月在云南省大理州賓川縣的大銀甸水庫建立了世界上第一個氣槍地震信號發(fā)射臺站。由于水庫大容量非調(diào)制氣槍陣列的優(yōu)越性能,賓川氣槍地震信號發(fā)射臺站可以連續(xù)不斷地向地下發(fā)射傳播距離遠(yuǎn)、重復(fù)性高的地震信號。利用賓川氣槍地震信號發(fā)射臺站激發(fā)的地震信號,我們就可以對滇西地區(qū)的地下波速變化進(jìn)行監(jiān)測。雖然目前我們尚處于數(shù)據(jù)積累的階段,我們利用在賓川氣槍地震信號發(fā)射臺站進(jìn)行的6次激發(fā)試驗,研究了激發(fā)條件(激發(fā)壓力、沉放深度和水庫水位)對水庫大容量非調(diào)制氣槍陣列激發(fā)地震信號的影響。這對于以后我們提高這類氣槍地震信號發(fā)射臺站的性能以及進(jìn)行波速變化研究都有重要意義。 接下來我們介紹了水庫大容量非調(diào)制氣槍陣列在區(qū)域尺度地下結(jié)構(gòu)探測中的應(yīng)用。利用2006年我們實驗室在河北省遵化市上關(guān)湖水庫進(jìn)行的大容量非調(diào)制氣槍陣列產(chǎn)生的地震數(shù)據(jù),我們采用波形擬合的方法,研究了燕山隆起帶南部地區(qū)地下的一維P波、S波、泊松比以及波速比結(jié)構(gòu)。我們發(fā)現(xiàn)該地區(qū)的地殼厚度約為33km,上中地殼的泊松比值偏低,可能以長英質(zhì)的酸性巖石為主,下地殼以及上地幔頂部泊松比值稍高,可能以鐵鎂質(zhì)的基性巖石或中性巖石為主。并且在該地區(qū)的上下地殼各存在一個P波和S波的低速層,并且這兩個低速層還對應(yīng)著泊松比和波速比的高值區(qū)。上地殼的低速層可能是流體作用的結(jié)果,而下地殼的低速層則可能是由于部分熔融造成的。 最后我們介紹利用尾波理論進(jìn)行地下波速變化成像研究。尾波是多重散射波,相比于直達(dá)波,它對地下介質(zhì)變化更為敏感。利用尾波可以測量地下微弱的波速變化。水庫地區(qū),水庫水位的變化會引起地表載荷的變化,進(jìn)而引起地下應(yīng)力和應(yīng)變的變化,是定量研究地下應(yīng)力和應(yīng)變變化與地下波速變化關(guān)系的理想?yún)^(qū)域。由于進(jìn)行本研究時,我們的氣槍地震信號發(fā)射臺站連續(xù)激發(fā)的時間還比較短。我們利用由架設(shè)在云南省大理州賓川縣大銀甸水庫周圍的16個流動地震臺站記錄到的背景噪聲相關(guān)得到的連續(xù)經(jīng)驗格林函數(shù)的尾波部分,我們測量了這些臺站間的波速變化,并且利用敏感核的方法反演了這個地區(qū)的波速變化的分布。我們發(fā)現(xiàn)可能只有距離水庫很近的地區(qū)的地下波速變化可能是由于水庫水位的變化造成的,而其它地區(qū)的波速變化則可能是由于地下水位的變化導(dǎo)致的。
[Abstract]:A large number of Seismological Evidence indicates that the occurrence of an earthquake is closely related to the structure of the deep. In relation to the underground structure, the occurrence of the earthquake is more important than the change in the structure and state of the underground. The earthquake is usually considered to be caused by the accumulation and release of the underground stress, because the stress state and its change are the key to the earthquake. Key factors. If we can continuously monitor the stress state of the earthquake zone (such as the fault zone, the boundary of the velocity block at all levels and the transition zone of the high and low velocity layer), it will help us to judge the danger of the earthquake in this area. But we have no way to stress the stress state in the deep seismogenic area. In a direct measurement, laboratory petrophysics experiments show that the velocity of the rock changes with the change of loading pressure (acoustic elasticity), so we can monitor the change of the underground stress by measuring the wave velocity that passes through the seismic waves in the deep seismogenic area. Such as natural disasters need, but also the development and exploitation of oil and gas mineral resources needs.
In order to detect and monitor the subsurface structure of the region, we adopt two sources: the source of the large capacity non modulated air gun array and the source of the background noise. First, the method of the reservoir large capacity non modulation air gun array. The limitation and the poor accuracy of the seismic location, and the artificial source method, which is usually used in the detection of the subsurface structure of the regional scale, also have the problems of the poor repeatability of the environment, which are not especially suitable for the detection and monitoring of the subsurface structure of the regional scale. Therefore, our laboratory has been exploring the new regional scale underground structure exploration. Through several experiments, we found that the large capacity non modulation gas gun array of the reservoir has the characteristics of low frequency, long propagation distance, good repeatability and no damage to the environment. It is very suitable for the detection and monitoring of the ground structure of the land.
The understanding of the source is the first step in the study of the structure and its change detection. Because the large capacity non modulation air gun array is excited in the land reservoir, the water area of the land reservoir is smaller, the water depth is shallower, the interaction of the gas gun array and the reservoir is more complex, and the gas gun is more complex than the air gun array in the land reservoir. A source system is formed together with the land reservoir. At present, the research on the source system is very few. Based on the Rayleigh-Plesset bubble oscillation equation and the momentum equation in the fluid and the continuity equation, a single force source model for the liquid solid interface is constructed for the remote field air gun seismic signal.
Then we introduce the application of the large capacity non modulation gas gun array in the monitoring of the variation of the velocity variation in the regional scale underground. In order to monitor the wave velocity changes in the west of Yunnan, especially the two major fault zones in the Honghe and Cheng Hai fault zones, the large capacity non modulation gas gun array of the reservoir is used in our laboratory at 2011. In April, the first gas gun seismic signal station was set up in the grand sildian reservoir in Binchuan County, Dali, Yunnan province. Due to the superior performance of the large capacity non modulated gas gun array, the Binchuan gas gun seismic signal transmitting station can transmit the seismic signals which are far away from the ground and have high repeatability to transmit to the underground station. The use of Binchuan is to use the seismic signal. We can monitor the change of the ground wave velocity in the West Yunnan. Although we are still in the stage of data accumulation, we have studied the excitation conditions (the excitation pressure, the depth of the sink and the reservoir), using the 6 excitation tests at the Binchuan gas gun seismic signal station. The effect of the water level on the seismic signal excited by the large capacity non modulated air gun array is of great significance to the improvement of the performance of this type of air gun seismic signal station and the study of the wave velocity change.
Then we introduce the application of the large capacity non modulation gas gun array in the exploration of the regional scale underground structure. Using the seismic data produced by the large capacity non modulation air gun array in the Shangguan Lake Reservoir in Zunhua, Hebei Province in 2006, we have studied the southern part of the Yanshan uplift zone by using the method of waveform fitting. One dimension P wave, S wave, Poisson's ratio and wave velocity ratio structure are found in the region. We found that the crust thickness of the region is about 33km, the Poisson ratio of the upper middle crust is low and may be dominated by the acidity rocks of the felsic, and the Poisson ratio at the top of the lower crust and the upper mantle is slightly higher, and may be dominated by magnesia based or neutral rocks. There is a low velocity layer of P wave and S wave in the upper and lower crust of the region, and the two low velocity layers also correspond to the high value zone of the Poisson's ratio and the wave speed ratio. The low velocity layer of the upper crust may be the result of fluid action, while the low velocity layer in the lower crust may be caused by partial melting.
Finally, we introduce the study of the change imaging of the underground wave velocity using the tail wave theory. The wake wave is a multiple scattering wave. Compared with the direct wave, it is more sensitive to the change of the underground medium. The change of the weak wave velocity in the underground can be measured by the wake wave. The reservoir area, the reservoir water level changes will cause the change of the surface load, and then cause the underground stress and the underground stress. The change of strain is an ideal area for quantitative study of the relationship between the change of underground stress and strain and the change of the velocity of the underground wave. Because of this study, the time of continuous excitation of our gas gun seismic signal transmitting station is still short. We use 16 mobile seismic stations around the Dayin reservoir in Binchuan County, Dali, Yunnan province. We recorded the wake part of the continuous empirical Green function obtained by the background noise related to the background noise. We measured the wave velocity changes between these stations, and used the sensitive core method to retrieve the distribution of wave velocity in this area. We found that the change of the velocity of the wave velocity in the area near the reservoir may be due to the reservoir water. The change of wave velocity in other areas may be caused by the change of groundwater level.
【學(xué)位授予單位】:中國地震局地球物理研究所
【學(xué)位級別】:博士
【學(xué)位授予年份】:2014
【分類號】:TV698.1;P631.4

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 周龍泉;劉桂萍;馬宏生;華衛(wèi);;利用重復(fù)地震觀測地殼介質(zhì)變化[J];地震;2007年03期

2 陳槞;周華偉;葛洪魁;;華北地震臺陣探測計劃[J];大地測量與地球動力學(xué);2005年04期

3 陳槞;張尉;陳漢林;齊誠;陳棋福;;地震雷達(dá)[J];地球物理學(xué)進(jìn)展;2006年01期

4 羅桂純;王寶善;葛洪魁;陳槞;;氣槍震源在地球深部結(jié)構(gòu)探測中的應(yīng)用研究進(jìn)展[J];地球物理學(xué)進(jìn)展;2006年02期

5 劉志;張先康;潘紀(jì)順;段永紅;楊卓欣;;阿尼瑪卿縫合帶及兩側(cè)上地殼泊松比分布[J];地球物理學(xué)進(jìn)展;2009年05期

6 王勤彩;陳章立;王中平;鄭斯華;;云南地區(qū)散射衰減、吸收衰減及尾波衰減的綜合研究[J];地球物理學(xué)進(jìn)展;2010年02期

7 張友南,馬瑾;深部地殼鎂鐵質(zhì)巖石波速的研究[J];地球物理學(xué)報;1997年02期

8 胡圣標(biāo),何麗娟,汪集e,

本文編號:1903497


資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/shuiwenshuili/1903497.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶74a76***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com