基于流體子域法的帶隔板矩形截面渡槽動力學特性研究
本文選題:流-固耦合 + 流體晃動。 參考:《南京工業(yè)大學》2015年碩士論文
【摘要】:渡槽是工程中常用的水工建筑物,主要用于輸水、排水和通航,渡槽內流體的晃動對結構的安全性有重大的影響。實際工程中,在儲液系統(tǒng)中安裝防晃板是一種即經(jīng)濟又有效的方法,不僅可以抑制流體的晃動,還能增加結構的剛度,提高其抗震性能。因此,研究帶隔板矩形截面渡槽內流體的動力學問題很有必要。本文基于勢流理論,采用半解析法解決了單邊帶隔板和兩邊帶隔板矩形截面渡槽內流體的動力學特性問題。本文首先介紹了帶隔板的矩形截面渡槽內流體晃動特性的求解方法-流體子域法。通過引入人工邊界,將復雜的流體子域沿隔板劃分成若干具有簡單邊界條件的子域,再將子域的邊界條件進行分解,使每組邊界條件中只含有一個非齊次邊界。利用分離變量法和疊加原理求解出每個子域含有待定系數(shù)的速度勢函數(shù)的一般解。將速度勢函數(shù)代入子域交界面上速度連續(xù)條件、壓力連續(xù)條件和液體自由表面方程即可得到頻率方程,利用Fourier級數(shù)將頻率方程展開成齊次方程組,求解這個方程組即得到渡槽內流體的晃動特性。利用此方法分別求解了單邊帶隔板和兩邊帶隔板矩形截面渡槽內液體的自由晃動特性,通過收斂性和比較研究證明本文方法的正確性,并且詳細分析了隔板的參數(shù)對晃動特性的影響。在此基礎上,本文解決了水平激勵下單邊帶隔板的矩形截面渡槽內流體晃動響應問題。首先證明渡槽內流體自由晃動模態(tài)的正交性,再根據(jù)線性疊加原理,可將流體的速度勢函數(shù)分解成兩個部分:剛體速度勢和攝動速度勢。分別求解這兩個速度勢函數(shù),通過子域的邊界條件可以設出剛體速度勢函數(shù)。利用模態(tài)疊加法,引入廣義的時間坐標,設出以時間為變量的攝動速度勢函數(shù)。將速度勢函數(shù)代入子域交界面上速度連續(xù)條件、壓力連續(xù)條件和自由液面方程即可得到動力響應方程。利用模態(tài)的正交性,將響應方程解耦成單自由度動力響應方程組,運用杜哈梅積分可以求解出晃動響應的解析解。建立二維ADINA有限元模型,將瞬態(tài)響應下的解析解與數(shù)值模擬結果進行對比,驗證本文方法的正確性,并且詳細分析了隔板參數(shù)對晃動響應的影響。本文的創(chuàng)新點在于采用流體子域法對復雜邊界進行處理,得到帶隔板矩形截面渡槽的動力學特性的高精度解。該方法程序編制簡單,結果精度高,具有很強的實用性。通過算例分析,得到以下主要結論:(1)單邊帶隔板矩形渡槽的固有晃動頻率隨隔板長度的增加而減小,隨隔板位置的升高而減小;隔板越接近液面,隔板長度對振型的影響越大;隔板越長,隔板上部液體的速度勢越大;(2)兩邊帶隔板矩形渡槽隔板對稱布置與不對稱布置相比,當隔板總長度相同時,隔板布置在同一個高度隔板,對稱布置對頻率影響更大,并且頻率降低的更多;(3)簡諧激勵作用下,最大波高、基底剪力、傾覆彎矩幅值都隨著隔板位置的增加單調減小,隔板越長,幅值越小;隨著隔板長度的增加單調減小,且隔板越高,幅值越小;(4)對于某一個固定的地震激勵,可以通過隔板位置和隔板長度的優(yōu)化使得基底剪力和傾覆彎矩的幅值最小,這便為防晃板的優(yōu)化設計提供了理論依據(jù)。
[Abstract]:Aqueduct is a commonly used hydraulic structure in engineering, which is mainly used for water transportation, drainage and navigation. The sloshing of fluid in the aqueduct has a great influence on the safety of the structure. In practical engineering, it is an economical and effective method to install anti sloshing plate in the liquid storage system. It can not only suppress the sloshing of the fluid, but also increase the stiffness of the structure and improve its structure. Therefore, it is necessary to study the dynamic problem of the fluid in a rectangular cross section aqueduct with a diaphragm. Based on the potential flow theory, a semi analytical method is used to solve the hydrodynamic characteristics of the internal fluid in a rectangular cross plate and rectangular cross plate aqueduct with two sides. First, the fluid sloshing in a rectangular cross section aqueduct with a baffle plate is introduced. By introducing artificial boundary, the complex fluid subdomains are divided into several subdomains with simple boundary conditions by introducing artificial boundaries, and then the boundary conditions of the subdomains are decomposed to make only one non homogeneous boundary in each boundary condition. Each subdomain is solved by the separation of variable method and the superposition principle. The general solution of the velocity potential function with the undetermined coefficient is replaced by the velocity potential function into the velocity continuum on the subdomain interface. The frequency equation can be obtained by the pressure continuity condition and the liquid free surface equation. The frequency equation is expanded into a homogeneous equation by Fourier series, and the sloshing characteristics of the fluid in the aqueduct are obtained by solving the equation. This method is used to solve the free sloshing characteristics of the liquid in the rectangular cross plate and the rectangular cross section aqueduct with both sides. Through the convergence and comparison, the correctness of the method is proved, and the influence of the parameters of the baffle on the sloshing characteristics is analyzed in detail. On this basis, this paper solves the single side baffle under the horizontal excitation. The problem of fluid sloshing in a rectangular cross section aqueduct is given. First, the orthogonality of the free sloshing mode of the fluid in the aqueduct is proved. Then, according to the linear superposition principle, the velocity potential function of the fluid can be decomposed into two parts: the velocity potential of the rigid body and the perturbed velocity potential. The two velocity potential functions are solved respectively, and the stiffness of the boundary conditions of the subdomain can be set out. The velocity potential function of the body velocity potential. By using the modal superposition method and introducing the generalized time coordinate, the perturbation velocity potential function with time variable is set up. The velocity potential function is replaced by the velocity continuous condition on the subdomain interface. The dynamic response equation can be obtained by the pressure continuity condition and the free liquid surface equation. The response equation is decoupled by the orthogonality of the modal. The dynamic response equations of single degree of freedom can be used to solve the analytical solution of the sloshing response by using the dukhami integral. A two-dimensional ADINA finite element model is established to compare the analytical solutions of the transient response with the numerical simulation results to verify the correctness of the method, and the influence of the septum parameters on the sloshing response is analyzed in detail. The innovation point of this paper is in this paper. The high precision solution of the dynamic characteristics of the rectangular cross section aqueduct with diaphragm is obtained by using the fluid subdomain method. The procedure is simple, the result is high, and it is practical. The following main conclusions are obtained by an example: (1) the natural sloshing frequency of the rectangular aqueduct with a single side baffle plate is long with the length of the baffle plate. It decreases with the increase of the degree of the partition, and decreases with the elevation of the partition position; the closer the partition board to the liquid surface, the greater the effect of the partition length on the vibration mode; the longer the partition board, the greater the velocity potential of the liquid in the upper baffle; (2) the partition plate is arranged at the same height, when the length of the partition is the same, when the length of the diaphragm is the same. The symmetrical arrangement has more influence on the frequency and more frequency. (3) under the effect of simple harmonic excitation, the maximum wave height, base shear, and the amplitude of the overturning moment decrease monotonically with the increase of the partition position, the longer the partition board, the smaller the amplitude; the higher the partition plate, the smaller the partition board, and (4) for a certain fixation. The earthquake excitation can minimize the amplitude of the base shear and the overturning moment through the optimization of the partition position and the length of the baffle plate, which provides a theoretical basis for the optimization of the anti sway plate.
【學位授予單位】:南京工業(yè)大學
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:TV672.3;TV135.3
【相似文獻】
相關期刊論文 前10條
1 王德剛;李英剛;;預應力排水渡槽三維有限元靜力分析[J];科技情報開發(fā)與經(jīng)濟;2009年34期
2 李正農;周振綱;朱旭鵬;;槽墩高度對渡槽結構水平地震響應的影響[J];地震工程與工程振動;2013年03期
3 A.S.Arya;S.K.Thakkar;王倩梅;;渡槽的抗震分析和設計研究[J];世界地震工程;1984年05期
4 陸建民;泥石流明洞渡槽在公路工程中的應用[J];水土保持通報;1985年02期
5 蔣俊峰;;超大體積薄壁渡槽施工溫控技術及其應用[J];科技創(chuàng)新與生產力;2014年02期
6 潘旦光,朱暾,傅永華,李崢;半橢圓形薄殼渡槽橫向內力分析[J];桂林工學院學報;2000年04期
7 楊占福;渡槽底板砼脫落露筋的原因及預防修復技術[J];甘肅科技;2004年02期
8 姬棟宇;;鋼絲網(wǎng)混凝土U形渡槽結構有限元分析[J];科技信息;2010年09期
9 宋國濤;程玉珍;孫旭;;預應力排水渡槽橫斷面受力研究[J];人民黃河;2010年06期
10 趙順波;管俊峰;黃承逵;;鋼筋混凝土多縱梁渡槽仿真模型試驗反演分析[J];工程力學;2010年10期
相關會議論文 前10條
1 黃亮;王博;徐建國;侯玉潔;;縱向地震動輸入下的大型渡槽結構減振控制研究[A];第18屆全國結構工程學術會議論文集第Ⅲ冊[C];2009年
2 彭輝;雷進生;;南水北調中線漕河渡槽結構地震動力特性研究[A];第九屆全國沖擊動力學學術會議論文集(上冊)[C];2009年
3 蔣林華;周曉明;徐寧;濮琦;儲洪強;徐金霞;;鋼筋混凝土渡槽耐久性研究進展[A];第七屆全國混凝土耐久性學術交流會論文集[C];2008年
4 彭宣茂;劉寧;;大型渡槽結構整體抗震分析[A];首屆全國水工抗震防災學術會議論文集[C];2006年
5 李正農;吳紅華;樓夢麟;;排架支承式渡槽自振特性的簡化計算方法[A];第十一屆全國結構工程學術會議論文集第Ⅱ卷[C];2002年
6 王瑜波;袁文陽;;渡槽結構模型動力特性試驗[A];第14屆全國結構工程學術會議論文集(第三冊)[C];2005年
7 姜鵬;張燎軍;;排架式渡槽風致響應的數(shù)值風洞試驗研究[A];現(xiàn)代水利水電工程抗震防災研究與進展(2013年)[C];2013年
8 李遇春;張龍;;渡槽抗震計算若干問題的討論與建議[A];現(xiàn)代水利水電工程抗震防災研究與進展(2013年)[C];2013年
9 吳劍國;金偉良;張愛暉;王盛;;基于馬氏鏈樣本模擬的渡槽結構系統(tǒng)可靠度分析[A];2005年船舶結構力學學術會議論文集[C];2005年
10 聶利英;殷玉梅;張雷;張燎軍;;渡槽減隔震設計中橡膠支座豎向性能探討[A];首屆全國水工抗震防災學術會議論文集[C];2006年
相關重要報紙文章 前5條
1 記者 趙洪亮;中線大流量渡槽技術研究獲新成果[N];中國水利報;2007年
2 本報記者 畢鵬飛;三年 我們這樣走過[N];中國水利報;2007年
3 記者 仇方迎邋通訊員 王懷民 蔣明;南水北調中線工程大流量渡槽技術難題攻克[N];科技日報;2007年
4 陳華;大型預應力U型薄殼渡槽施工技術創(chuàng)新[N];科技日報;2004年
5 本報記者 蘇冠群;科技創(chuàng)新助推建設又好又快[N];中國水利報;2008年
相關博士學位論文 前4條
1 黃亮;大型渡槽結構半主動控制研究[D];鄭州大學;2010年
2 王云倉;三向預應力多側墻渡槽結構研究[D];天津大學;2008年
3 鄭明燕;考慮SSI的減隔震簡支橋梁(渡槽)建模及地震動力響應研究[D];中國地質大學;2014年
4 徐建國;大型渡槽結構抗震分析方法及其應用[D];大連理工大學;2005年
,本文編號:1871231
本文鏈接:http://sikaile.net/kejilunwen/shuiwenshuili/1871231.html