天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 水利工程論文 >

基于SVM與灰色理論的大壩基巖安全監(jiān)測動(dòng)態(tài)評判研究

發(fā)布時(shí)間:2018-04-21 10:35

  本文選題:大壩壩基 + 灰色理論 ; 參考:《合肥工業(yè)大學(xué)》2014年碩士論文


【摘要】:大壩監(jiān)測數(shù)據(jù)分析理論和方法的研究與應(yīng)用已經(jīng)取得了相當(dāng)?shù)倪M(jìn)展,為保證大壩安全運(yùn)行發(fā)揮了巨大的作用。但是,在數(shù)據(jù)分析方面依然存在許多問題和不足。大壩壩基是大壩的主要組成部分,目前對壩基做出綜合評價(jià)的研究仍然較少,大多數(shù)研究主要集中在壩基單項(xiàng)指標(biāo)基礎(chǔ)上的單項(xiàng)指標(biāo)評價(jià)。針對現(xiàn)有分析方法和分析模型中存在的問題和不足,建立壩基綜合評價(jià)體系中各指標(biāo)的權(quán)值模型,結(jié)合灰色理論綜合評判框架,對壩基運(yùn)行狀態(tài)做出安全評價(jià),并在此基礎(chǔ)上將支持向量機(jī)模型應(yīng)用到大壩壩基監(jiān)測數(shù)據(jù)的分析及預(yù)測中,形成支持向量機(jī)與灰色系統(tǒng)理論相結(jié)合的動(dòng)態(tài)評價(jià)體系,更加有效合理地實(shí)現(xiàn)對壩基運(yùn)行現(xiàn)狀及發(fā)展趨勢做出評價(jià),,滿足實(shí)際工程應(yīng)用的需要。 影響壩基安全的因素眾多,目前技術(shù)水平還難以獲取壩基運(yùn)行狀態(tài)全部信息。由于人們的認(rèn)識有限或受到偽信息的干擾,這使得壩基監(jiān)測信息不完全,即具有灰性,同時(shí)為了避免壩基單項(xiàng)指標(biāo)評價(jià)的不足,本文采用灰色聚類綜合評判模型實(shí)現(xiàn)對壩基運(yùn)行狀態(tài)做出安全綜合評價(jià)。針對綜合評價(jià)中權(quán)值對評判結(jié)果的重要程度,在現(xiàn)有權(quán)值計(jì)算模型的基礎(chǔ)上,為充分挖掘大壩監(jiān)測數(shù)據(jù)所攜帶的信息,并考慮影響大壩基巖安全的因素特征,從投影尋蹤(PP)方法的優(yōu)化函數(shù)和約束條件兩個(gè)方面改進(jìn)傳統(tǒng)算法,從而得到約束型最大熵投影尋蹤耦合權(quán)值模型,并采用此權(quán)值模型對壩基運(yùn)行安全現(xiàn)狀做出了綜合評判。 由于大壩運(yùn)行管理者不僅僅希望了解大壩壩基運(yùn)行現(xiàn)狀,還希望能夠了解壩基運(yùn)行的發(fā)展趨勢,本文將支持向量機(jī)模型引入到壩基位移預(yù)測中,建立了壩基位移與環(huán)境量之間的支持向量機(jī)模型,并對大壩壩基位移做出預(yù)測。本文在監(jiān)測數(shù)據(jù)為小樣本的基礎(chǔ)上,將灰色系統(tǒng)理論與支持向量機(jī)兩種適合于小樣本的數(shù)學(xué)模型相結(jié)合,利用動(dòng)態(tài)支持向量機(jī)對壩基位移做出預(yù)測,并利用約束型最大熵-投影尋蹤模型計(jì)算壩基指標(biāo)的動(dòng)態(tài)權(quán)重,再在兩者的基礎(chǔ)上利用灰色系統(tǒng)綜合評價(jià)理論,構(gòu)建了完整的動(dòng)態(tài)安全評價(jià)框架。
[Abstract]:Considerable progress has been made in the research and application of dam monitoring data analysis theory and method, which plays an important role in ensuring dam safe operation. However, there are still many problems and shortcomings in data analysis. The dam foundation is the main part of the dam. At present, the research on the comprehensive evaluation of the dam foundation is still few, and most of the studies are mainly focused on the single index evaluation based on the single index of the dam foundation. In view of the problems and shortcomings in the existing analysis methods and models, the weight model of each index in the comprehensive evaluation system of dam foundation is established, and the safety evaluation of the operation state of the dam foundation is made by combining the comprehensive evaluation frame of grey theory. On this basis, the support vector machine model is applied to the analysis and prediction of dam foundation monitoring data, and a dynamic evaluation system combining support vector machine and grey system theory is formed. It is more effective and reasonable to evaluate the present situation and development trend of dam foundation operation and to meet the needs of practical engineering application. There are many factors influencing the safety of the dam foundation, so it is difficult to obtain all the information of the operation state of the dam foundation at present. Because people's understanding is limited or disturbed by false information, the monitoring information of dam foundation is not complete, that is, it is grey, and in order to avoid the deficiency of single index evaluation of dam foundation, In this paper, the grey cluster comprehensive evaluation model is used to evaluate the operation state of dam foundation. In view of the importance of weight value to the result of comprehensive evaluation, based on the existing calculation model of weight value, the information carried by dam monitoring data is fully excavated and the characteristics of factors affecting the safety of dam bedrock are considered. The traditional algorithm is improved from two aspects of optimization function and constraint condition of projection pursuit PP) method, and the coupling weight model of constrained maximum entropy projection pursuit is obtained, and the safety situation of dam foundation is evaluated synthetically by using this weight model. Because the managers of dam operation not only want to know the current situation of dam foundation operation, but also want to know the development trend of dam foundation operation, this paper introduces support vector machine model into dam foundation displacement prediction. The support vector machine model between dam foundation displacement and environmental quantity is established, and the dam foundation displacement is predicted. Based on the small sample of monitoring data, this paper combines the grey system theory with the support vector machine (SVM) to predict the displacement of dam foundation by using dynamic support vector machine (DSVM). The dynamic weight of the dam foundation index is calculated by using the constrained maximum entropy projection pursuit model, and the comprehensive evaluation theory of grey system is used to construct a complete dynamic safety evaluation framework.
【學(xué)位授予單位】:合肥工業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:TV698.1

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 范千;王新洲;許承權(quán);;大壩變形預(yù)測的支持向量機(jī)模型[J];測繪工程;2007年06期

2 黃全義,張正祿;基于人工神經(jīng)網(wǎng)絡(luò)的大壩變形分析與預(yù)報(bào)研究[J];大壩與安全;2002年05期

3 吳云芳,李珍照,薛桂玉;大壩實(shí)測性態(tài)的多級灰關(guān)聯(lián)評估方法研究[J];大壩觀測與土工測試;1998年05期

4 王躍威,黃銘,潘翔;神經(jīng)網(wǎng)絡(luò)在高壩基巖多點(diǎn)位移計(jì)監(jiān)測分析中的應(yīng)用[J];水電自動(dòng)化與大壩監(jiān)測;2005年04期

5 王志軍;汪亞超;宋宜猛;;物元模型在大壩安全度評價(jià)中的應(yīng)用[J];水電自動(dòng)化與大壩監(jiān)測;2008年01期

6 何金平;涂圓圓;逄智堂;;大壩安全監(jiān)測系統(tǒng)綜合評價(jià)(Ⅲ)評價(jià)方法[J];水電自動(dòng)化與大壩監(jiān)測;2011年03期

7 王紹泉;多層次閾值模糊綜合評判在分析大壩安全中的應(yīng)用[J];大壩觀測與土工測試;1997年04期

8 趙斌,吳中如,顧沖時(shí),陽武;神經(jīng)網(wǎng)絡(luò)在大壩安全評判專家系統(tǒng)中的應(yīng)用[J];大壩觀測與土工測試;1998年02期

9 趙卿;李瀟;徐進(jìn)軍;宓天躍;;混沌-支持向量機(jī)在大壩安全監(jiān)控預(yù)測中的應(yīng)用[J];大地測量與地球動(dòng)力學(xué);2008年02期

10 李瀟;徐進(jìn)軍;;動(dòng)態(tài)穩(wěn)健支持向量機(jī)在大壩變形預(yù)測中的應(yīng)用[J];大地測量與地球動(dòng)力學(xué);2009年02期



本文編號:1782061

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/shuiwenshuili/1782061.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶cf7e1***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請E-mail郵箱bigeng88@qq.com