淺水風(fēng)生波、流特性的實驗研究
本文選題:淺水 切入點:風(fēng)生波 出處:《上海交通大學(xué)》2014年碩士論文 論文類型:學(xué)位論文
【摘要】:湖泊中風(fēng)生波是水表面受到風(fēng)的摩擦剪應(yīng)力和波浪背面受到風(fēng)壓力作用引起的。其水面受到風(fēng)應(yīng)力的擾動,激發(fā)風(fēng)浪使其成長為風(fēng)生波。且在粘滯力作用下表層水體帶動下層水體沿風(fēng)向運動,湖泊中水體因此而產(chǎn)生壅高。由于湖泊水體質(zhì)量守恒,近湖底水體產(chǎn)生與風(fēng)向相反的補償流,從而在湖泊中產(chǎn)生縱向的風(fēng)生環(huán)流。我國眾多湖泊均為淺水型湖泊,湖泊水體在風(fēng)生波作用下的運動復(fù)雜且劇烈,湖底淤泥和污染物等易受淺水風(fēng)生表面波的擾動而產(chǎn)生懸浮,而起揚的底泥與污染物等在風(fēng)生流的作用下將產(chǎn)生輸移。因此淺水風(fēng)生波、風(fēng)生流是淺水湖泊中底泥等物質(zhì)再懸浮和輸移的直接動力來源,,是研究淺水湖泊水動力學(xué)的關(guān)鍵。南京水利科學(xué)研究院建設(shè)水平比尺為1:500的太湖三維物理模型,對湖區(qū)水動力變化規(guī)律、湖區(qū)污染物運輸規(guī)律和入湖河流與湖泊水流聯(lián)動機理進行研究。 本文采用物理模型實驗的方法對淺水湖泊的風(fēng)生波、流進行了實驗研究。具體研究內(nèi)容如下: 1)在上海交通大學(xué)的風(fēng)浪流水槽中采用可升降假底裝置模擬了典型淺水湖泊的淺水效應(yīng),研究了不同淺水條件下風(fēng)生波的頻譜、波高、波長以及壅水等特性,并將實驗得到的波長、波高及壅水結(jié)果與已有經(jīng)驗公式計算結(jié)果進行了對比分析。結(jié)果表明,本實驗條件下風(fēng)生波有明顯的淺水效應(yīng),且在淺水條件下存在一個臨界風(fēng)速,淺水風(fēng)生波的波高、波譜變化規(guī)律與該臨界風(fēng)速有關(guān)。 2)在淺水風(fēng)生流實驗中,首先利用示蹤粒子測量不同水深和不同特征風(fēng)速條件下表面流速的大小,實驗結(jié)果表明隨著風(fēng)速的增大表面流速呈線性增長趨勢,且隨著水深的增大表面流速減小。隨后采用粒子成像測速儀(PIV)和聲學(xué)多普勒流速儀(ADV)設(shè)備對給定測量段斷面處的垂向平均流速分布進行測量。測量結(jié)果表明,兩種測量手段所得的風(fēng)生流場吻合較好,而且測量結(jié)果與理論解析解一致,即水槽模型能用來模擬研究淺水風(fēng)生流的流場特性。 3)在加糙技術(shù)模擬淺水風(fēng)生波的實驗中,通過表面加糙和底面加糙的方式進行實驗研究。表面加糙方式為:由水面拍擊方法模擬風(fēng)生表面波,增加水表面粗糙度;由風(fēng)機吸風(fēng)模擬風(fēng)場作用產(chǎn)生風(fēng)壅水,以此探索一種將水面拍擊與風(fēng)機技術(shù)結(jié)合的淺水風(fēng)生波模擬技術(shù),以期在滿足模型壅水率的前提下,降低風(fēng)機能耗。底面加糙方式為:在模型底面鋪設(shè)加糙設(shè)備,增大底面粗糙度,以此提高壅水率,以期在滿足模型壅水率的前提下,降低風(fēng)機能耗。 4)根據(jù)本文實驗中測得的不同實驗水深、不同特征風(fēng)速條件下的壅水率,給出了滿足太湖模型壅水要求條件下,特征風(fēng)速與水深的關(guān)系曲線。由該關(guān)系曲線可知:當水深給定時,壅水率隨風(fēng)速的增大而呈增大趨勢;當風(fēng)速給定時,壅水率隨水深的增大而減小。同時根據(jù)風(fēng)生波波高實驗結(jié)果,給出了不同壅水率條件下,太湖模型最大風(fēng)吹程的平均波高隨水深的關(guān)系曲線。這兩條關(guān)系曲線對預(yù)報太湖模型的壅水高度和平均波高有重要的實用價值。
[Abstract]:The lake wind-driven wave is the water surface by the wind friction shear stress and wave back is caused by wind pressure. The surface disturbance of wind stress, stimulate the waves to grow as wind-driven waves. And the viscous force under the action of surface water to the bottom water along the wind direction movement, resulting in lake water high. Because the lake water quality conservation, water flow near the bottom and the opposite direction of compensation, resulting in vertical wind-driven circulation in the lakes. Lakes in China are shallow lake, lake water in the role of wind wave motion under the complex and intense, and vulnerable to pollutants such as silt disturbance waves in shallow water. Due to suspension, and Yang sediment and pollutant transport in the wind-driven flow will produce under the action of wind wave in shallow water. Therefore, wind-driven current is directly from the shallow lake material resuspension and transport The source of power is the key of shallow lake water dynamics. Nanjing Scientific Research Institute of water conservancy construction level of Taihu three-dimensional physical model of 1:500 scale, the variation of hydrodynamic and pollutant transport of Lake Lake, the river into the lake and lake water linkage mechanism was studied.
This method and physical model test of wind wave in shallow lakes, streams were studied. The main research contents are as follows:
1) by lifting the false bottom device simulation the shallow water effect typical shallow lake in the storm water tank of Shanghai Jiao Tong University, studied the wave height spectrum, different wind wave in shallow water, the wavelength and the backwater and other characteristics, and the wavelength, wave height and water level results and the experience formula calculation results are compared the analysis results showed that the experimental conditions of wind wave in shallow water has obvious effect, and there is a critical wind speed in shallow water conditions, shallow water wind wave height variation, spectrum associated with the critical wind speed.
2) in shallow water current flow in the experiment, first using the tracer particle measurement of surface flow velocity under different water depth and wind speed characteristics of the size, the experimental results show that with the increase of wind speed of surface flow velocity increases linearly, and with the surface velocity decreased with increasing depth. Then using particle image velocimetry (PIV) and acoustic Doppler velocimeter (ADV) the equipment section given measuring section were measured to the average vertical velocity distribution. The measurement results show that the two kinds of wind-driven current measurement method and the measurement result agree well with analytical solution, which can be used to simulate the flow field model of shallow water current flow.
3) roughening technology in simulation of shallow water wave by wind experiment, through the experimental research of surface roughness and surface roughness. The surface roughness is: the surface slap method to simulate the wind-driven surface wave, increase the surface roughness by the suction fan; simulation of wind field generated wind backwater, so to explore a combination of water and slap fan technology simulation technology of shallow water wave by wind, in order to meet the model backwater rate, reduce the energy consumption of the fan. The bottom surface roughness is laying face roughness in model of bottom equipment, increase the bottom surface roughness, so as to improve the rate of water. In order to meet the model backwater rate, reduce the energy consumption of the fan.
4) according to the different experimental depth measured in this experiment, the different characteristics of wind speed under the condition of backwater rate is given to meet the Taihu model water requirement, curve characteristics of wind speed and depth. The curves show that when the water depth is given increasing backwater rate with wind speed increases; when the wind speed is given, the backwater rate with depth increasing. At the same time according to the wind wave experimental results, given the conditions of different water ratio, the average wave height of Taihu model with maximum wind blowing distance curve of water depth. The two curves of forecast model of Taihu in the backwater height and average wave height it has important practical value.
【學(xué)位授予單位】:上海交通大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:TV139.2
【參考文獻】
相關(guān)期刊論文 前10條
1 周海松;張健;吳志堅;胡雪嬌;;聯(lián)機分析處理在太湖流域水文遙測系統(tǒng)中的應(yīng)用[J];水電自動化與大壩監(jiān)測;2009年01期
2 牛振國,張祖陸;中國湖泊環(huán)境若干問題探討[J];地理學(xué)與國土研究;1997年04期
3 逄勇,濮培民;太湖風(fēng)生流三維數(shù)值模擬試驗[J];地理學(xué)報;1996年04期
4 袁旭音,陳駿,陶于祥,季峻峰,許乃政;太湖北部底泥中氮、磷的空間變化和環(huán)境意義[J];地球化學(xué);2002年04期
5 戴雄武;中國湖泊的現(xiàn)狀和開發(fā)途徑[J];地域研究與開發(fā);1989年02期
6 孫順才;王蘇民;鄭長蘇;;中國湖泊地貌與湖泊沉積學(xué)研究概況[J];湖泊科學(xué);1989年01期
7 梁瑞駒,仲金華;太湖風(fēng)生流的三維數(shù)值模擬[J];湖泊科學(xué);1994年04期
8 逄勇,濮培民;大氣-水耦合模式下三維太湖湖流場研究[J];湖泊科學(xué);1996年02期
9 竇鴻身,王蘇民,姜加虎,汪憲h;中國湖泊綜合分類原則、級別劃分及分類程序之初探[J];湖泊科學(xué);1996年02期
10 朱永春,蔡啟銘;風(fēng)場對藻類在太湖中遷移影響的動力學(xué)研究[J];湖泊科學(xué);1997年02期
本文編號:1637498
本文鏈接:http://sikaile.net/kejilunwen/shuiwenshuili/1637498.html