基于基因表達(dá)式編程的大壩變形預(yù)測(cè)模型研究
本文選題:大壩 切入點(diǎn):變形預(yù)測(cè) 出處:《江西理工大學(xué)》2014年碩士論文 論文類型:學(xué)位論文
【摘要】:為保障大壩的安全運(yùn)營(yíng)狀態(tài),需要根據(jù)已有的觀測(cè)數(shù)據(jù)預(yù)測(cè)大壩未來(lái)的變形量。而目前對(duì)于大壩變形的預(yù)測(cè)方法較多,傳統(tǒng)的預(yù)測(cè)方法存在預(yù)測(cè)過(guò)程復(fù)雜、速度慢、預(yù)測(cè)精度低等問(wèn)題;虮磉_(dá)式編程是在遺傳算法和遺傳編程的基礎(chǔ)上發(fā)展起來(lái)的一種新型演化算法,它被廣泛應(yīng)用在災(zāi)害預(yù)警等預(yù)測(cè)領(lǐng)域。因此,非常有必要開(kāi)展基于基因表達(dá)式編程的大壩變形預(yù)測(cè)研究。 本文首先闡述了大壩變形預(yù)測(cè)和基因表達(dá)式編程的國(guó)內(nèi)外研究現(xiàn)狀,介紹了大壩變形監(jiān)測(cè)理論和大壩預(yù)測(cè)模型;其次,根據(jù)基因表達(dá)式編程原理及算法流程,確定模型構(gòu)建包括函數(shù)集與終止符集的確定、種群初始化、染色體解碼、適應(yīng)度評(píng)價(jià)、遺傳操作等過(guò)程,利用Visual Studio平臺(tái)下的C#編程語(yǔ)言,,完成了模型的構(gòu)建工作;然后,利用C#語(yǔ)言設(shè)計(jì)Fibonacci加權(quán)滑動(dòng)窗口法程序,對(duì)大壩監(jiān)測(cè)數(shù)據(jù)進(jìn)行預(yù)處理;最后,用MATLAB軟件建立灰色GM(1,1)模型和BP神經(jīng)網(wǎng)絡(luò)模型,分別利用基于基因表達(dá)式編程預(yù)測(cè)模型、灰色GM(1,1)預(yù)測(cè)模型和BP神經(jīng)網(wǎng)絡(luò)模型對(duì)某大壩進(jìn)行了變形預(yù)測(cè),并分析了三種預(yù)測(cè)模型的預(yù)測(cè)結(jié)果。 通過(guò)計(jì)算可知,三種模型在水平位移的平均相對(duì)誤差分別為1.43%、3.85%和3.08%;在垂直位移的平均相對(duì)誤差分別為1.87%、5.54%和4.83%。實(shí)驗(yàn)結(jié)果表明,基因表達(dá)式編程的大壩變形預(yù)測(cè)模型精度相對(duì)較高,優(yōu)于灰色GM(1,1)模型和BP神經(jīng)網(wǎng)絡(luò)模型的預(yù)測(cè)精度。由此可知基于基因表達(dá)式編程的大壩變形預(yù)測(cè)模型為大壩變形預(yù)測(cè)提供了一種新的方法。
[Abstract]:In order to ensure the safe operation of the dam, it is necessary to predict the future deformation of the dam according to the existing observation data. Genetic expression programming is a new evolutionary algorithm developed on the basis of genetic algorithm and genetic programming. It is widely used in prediction fields such as disaster warning. It is necessary to study dam deformation prediction based on genetic expression programming. In this paper, the research status of dam deformation prediction and gene expression programming is introduced, and the dam deformation monitoring theory and dam prediction model are introduced. The construction of deterministic model includes the determination of function set and terminator set, population initialization, chromosome decoding, fitness evaluation, genetic operation and so on. Using C # programming language based on Visual Studio, the model is constructed. The program of Fibonacci weighted sliding window method is designed by C # language to preprocess the dam monitoring data. Finally, the grey GM1 / 1) model and BP neural network model are established by MATLAB software, and the prediction model based on genetic expression programming is used, respectively. The deformation prediction of a dam is carried out by using the grey GMX1) prediction model and the BP neural network model, and the results of three kinds of prediction models are analyzed. The average relative errors of the three models in horizontal displacement are 1.433.85% and 3.08%, respectively, and the average relative errors in vertical displacement are 1.875.54% and 4.833%, respectively. The precision of dam deformation prediction model based on gene expression programming is relatively high. The prediction accuracy of the model is better than that of the grey GMX1) model and the BP neural network model, which shows that the dam deformation prediction model based on genetic expression programming provides a new method for dam deformation prediction.
【學(xué)位授予單位】:江西理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:TV698.11
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 翁靜君;華錫生;;改進(jìn)的BP神經(jīng)網(wǎng)絡(luò)在大壩安全監(jiān)控中的應(yīng)用[J];水電自動(dòng)化與大壩監(jiān)測(cè);2006年04期
2 田旦;許才軍;周命端;陳浩;;基于混沌時(shí)間序列的大壩變形短期預(yù)測(cè)[J];水電自動(dòng)化與大壩監(jiān)測(cè);2008年05期
3 張克俊;孫守遷;唐勇波;司宏宗;;基于基因表達(dá)式編程預(yù)測(cè)醛類化合物急性毒性[J];分析化學(xué);2009年03期
4 吳中如;中國(guó)大壩的安全和管理[J];中國(guó)工程科學(xué);2000年06期
5 趙建剛;王玉;司宏宗;楊寧強(qiáng);;基因表達(dá)式編程輔助診斷脂肪肝的新模型研究[J];中華疾病控制雜志;2010年12期
6 鄧松;元昌安;趙波;段磊;楊樂(lè)嬋;饒?jiān)?廖劍平;;基于GEP和神經(jīng)網(wǎng)絡(luò)的屬性約簡(jiǎn)分類算法[J];計(jì)算機(jī)工程與應(yīng)用;2006年23期
7 王宗躍;張建偉;黃樟燦;;基于演化建模的圖像配準(zhǔn)模型[J];計(jì)算機(jī)工程與應(yīng)用;2007年35期
8 曹廣晶;趙鑫鈺;;論水電建設(shè)在能源安全戰(zhàn)略中的作用[J];人民長(zhǎng)江;2007年08期
9 姜s
本文編號(hào):1632159
本文鏈接:http://sikaile.net/kejilunwen/shuiwenshuili/1632159.html