水文模型參數(shù)多目標(biāo)率定及最優(yōu)非劣解優(yōu)選
發(fā)布時間:2018-03-18 00:08
本文選題:水文模型參數(shù)率定 切入點(diǎn):多目標(biāo)優(yōu)化 出處:《水文》2017年02期 論文類型:期刊論文
【摘要】:針對概念性水文模型參數(shù)眾多、相互制約,且多目標(biāo)參數(shù)優(yōu)化率定最優(yōu)參數(shù)求解困難、易受決策者主觀因素影響的問題,采用多目標(biāo)優(yōu)化算法對水文模型參數(shù)進(jìn)行率定,得到模型參數(shù)最優(yōu)非劣解集,在此基礎(chǔ)上,引入最小最大后悔值決策理論,并結(jié)合Pareto支配基本理論,提出了一種多目標(biāo)最優(yōu)非劣解選取準(zhǔn)則。以柘溪流域?yàn)檠芯繉ο?采用三目標(biāo)MOSCDE優(yōu)化率定新安江模型的參數(shù),并與單目標(biāo)SCE-UA優(yōu)化結(jié)果進(jìn)行對比分析。結(jié)果表明,提出的非劣解選取方法可以有效從大規(guī)模非劣解集中篩選出最優(yōu)非劣解,大大縮短參數(shù)率定耗時。
[Abstract]:According to the conceptual hydrological model has many parameters and restrict each other, and multi-objective parameter optimization and calibration of the optimal parameters is difficult to be influenced by the decision-maker's subjective factors, using a multi-objective optimization algorithm for calibration of hydrological model parameters, get the optimal model parameters of non inferior solutions, on the basis of introducing the minimum maximum regret value decision theory, and combined with Pareto control theory, a multi-objective optimal Pareto selection criterion is proposed. In order to Zhexi basin as the research object, using the three parameter optimization target MOSCDE rate model of Xin'An River, and the single target SCE-UA optimization results were compared and analyzed. The results show that the proposed selection method of non inferior solution can from a large non inferior solution set to select the best non inferior solution, greatly shorten the calibration time.
【作者單位】: 華中科技大學(xué)水電與數(shù)字化工程學(xué)院;大連理工大學(xué)水利工程學(xué)院;
【基金】:國家自然科學(xué)基金重大研究計劃重點(diǎn)支持項目(91547208);國家自然科學(xué)基金項目(51579017) 水利部公益性行業(yè)科研專項經(jīng)費(fèi)項目(201401014-2)
【分類號】:P333
,
本文編號:1627103
本文鏈接:http://sikaile.net/kejilunwen/shuiwenshuili/1627103.html
最近更新
教材專著