不同膠凝材料體系水工混凝土的力學(xué)與變形性能研究
本文關(guān)鍵詞: 水工混凝土 膠凝材料體系 水膠比 準(zhǔn)絕熱溫升 自生體積變形 干燥收縮 出處:《浙江工業(yè)大學(xué)》2014年碩士論文 論文類型:學(xué)位論文
【摘要】:在實(shí)際的混凝土工程應(yīng)用中,由于混凝土自身的極限拉伸強(qiáng)度不足以抵抗水化熱引起的溫度應(yīng)力及收縮引起的收縮應(yīng)力,導(dǎo)致混凝土裂縫的產(chǎn)生與開展,對(duì)結(jié)構(gòu)產(chǎn)生破壞性危害。對(duì)于水工混凝土之類的大體積混凝土的開裂問(wèn)題一直更是備受關(guān)注。解決大體積混凝土的開裂問(wèn)題,需對(duì)混凝土力學(xué)性能,水化熱機(jī)理及其特性,收縮變形性能進(jìn)行深入研究,而作為混凝土最重要組成材料的膠凝材料則是研究的基礎(chǔ)。本文即是以水泥種類、粉煤灰、水膠比等為實(shí)驗(yàn)參數(shù),實(shí)驗(yàn)研究了水工混凝土膠凝體系的抗壓、抗折強(qiáng)度,水工混凝土的抗壓強(qiáng)度、抗拉強(qiáng)度,以及兩者的準(zhǔn)絕熱溫升特性、自生體積變形與干縮變形。 在本文研究范圍內(nèi)可得出以下結(jié)果或結(jié)論: 1、使用低熱水泥和摻入粉煤灰都降低了砂漿與混凝土的早期強(qiáng)度,而后期強(qiáng)度發(fā)展速率較快;在同一養(yǎng)護(hù)溫度條件下,水膠比越小,則同一齡期下的強(qiáng)度越高。 2、水工混凝土的抗壓強(qiáng)度與其拉伸強(qiáng)度、拉伸彈模、極限拉應(yīng)變之間存在良好的乘冪關(guān)系,并且這類關(guān)系受水泥種類和水膠比的影響較小。 3、所設(shè)實(shí)驗(yàn)參數(shù)對(duì)砂漿或混凝土的準(zhǔn)絕熱溫升特性的影響規(guī)律一致:包含中熱水泥的砂漿或混凝土的溫升值及溫升速率比包含低熱水泥的要大;粉煤灰的摻入降低了溫升值,減緩了溫升速率;水膠比增大,溫升值及其速率減小。 4、中熱水泥砂漿的自生體積變形遠(yuǎn)比低熱水泥的大,而中熱水泥混凝土的自生體積變形與低熱水泥混凝土的相差不大。水膠比的大小以及粉煤灰的摻入對(duì)砂漿和混凝土的自生體積變形的影響一致,即水膠比減小,自生體積收縮量增大;粉煤灰的摻入減小了自身體積收縮量,同時(shí)抑制了氧化鎂的膨脹。 5、砂漿的干燥收縮與對(duì)應(yīng)混凝土的干燥收縮之間具有良好的相關(guān)性,并可用二次多項(xiàng)式進(jìn)行描述。
[Abstract]:Concrete in the actual engineering application, the ultimate tensile strength of concrete is not enough to resist the hydration heat caused by temperature stress and shrinkage shrinkage stress, lead to concrete cracks and to carry out the devastating damage to the structure. For the problem of cracking in mass concrete of hydraulic concrete has been more like concern. To solve the problem of cracking in mass concrete, performance on concrete mechanics, mechanism and characteristics of hydration heat, shrinkage deformation properties are studied, and as the most important constituent materials of concrete cementitious materials is the foundation of the research. This paper is based on the type of cement, fly ash, the ratio of experimental parameters of water glue, experimental study of hydraulic concrete cementitious system with compressive strength, flexural strength, compressive strength, concrete tensile strength, as well as the quasi adiabatic temperature rise characteristic, volume Deformation and shrinkage deformation.
The following results or conclusions can be obtained in the scope of this study:
1, the use of low heat cement and incorporation of fly ash reduced the early strength of mortar and concrete, while the later strength development rate was faster. Under the same curing temperature, the smaller the water binder ratio, the higher the strength at the same age.
2, the compressive strength of concrete and the tensile strength, tensile modulus, good power relationship between the ultimate tensile strain, and this kind of relationship is influenced by the type of cement and water cement ratio is small.
3, the influence of consistent experimental parameters on the adiabatic temperature rise characteristics of quasi mortar or concrete. The rate is bigger than the cement containing temperature and temperature in hot cement contains the appreciation of the mortar or concrete; fly ash reduces the temperature rise, slow temperature rise rate; water cement ratio temperature rise, and its speed is reduced.
4, in situ thermal cement mortar volume deformation than the cement, and moderate heat Portland cement concrete autogenous volume deformation and low heat cement concrete are similar. The water binder ratio and size of fly ash self consistent effect on volume deformation of concrete and mortar, which reduce the water cement ratio, in situ the volume shrinkage increases; fly ash reduces its volume shrinkage, while inhibiting the expansion of Magnesium Oxide.
5, there is a good correlation between the drying shrinkage of the mortar and the dry shrinkage of the corresponding concrete, and can be described by the two polynomial.
【學(xué)位授予單位】:浙江工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:TV431
【參考文獻(xiàn)】
相關(guān)期刊論文 前9條
1 胡建勤,管斌君,何慶豐;粉煤灰對(duì)混凝土補(bǔ)償收縮性能的影響[J];粉煤灰綜合利用;2001年03期
2 經(jīng)柏林;荊州長(zhǎng)江公路大橋承臺(tái)大體積混凝土溫度監(jiān)測(cè)與裂縫控制[J];公路;2000年11期
3 謝臣,楊文燦,楊文志,蔣翔;南京長(zhǎng)江二橋大型承臺(tái)施工中的溫度控制[J];國(guó)外公路;2000年03期
4 嚴(yán)捍東,孫偉;粉煤灰砂漿自生收縮和干燥收縮關(guān)系的研究[J];硅酸鹽學(xué)報(bào);2003年05期
5 王鐵夢(mèng);黃善衡;;大體積混凝土的瞬態(tài)溫度場(chǎng)和溫度收縮應(yīng)力的計(jì)算機(jī)仿真[J];工業(yè)建筑;1990年01期
6 楊華全;董維佳;林育強(qiáng);;粉煤灰與礦渣粉對(duì)水泥水化熱及膠砂強(qiáng)度影響[J];人民長(zhǎng)江;2007年05期
7 陳霞;楊華全;李家正;;外摻氧化鎂混凝土的變形特性研究[J];人民長(zhǎng)江;2011年04期
8 李光偉;聚丙烯纖維對(duì)混凝土抗裂性能的影響[J];水電站設(shè)計(jì);2002年02期
9 魯麗華;潘桂生;陳四利;張?jiān)?;不同摻量粉煤灰混凝土的強(qiáng)度試驗(yàn)[J];沈陽(yáng)工業(yè)大學(xué)學(xué)報(bào);2009年01期
,本文編號(hào):1528545
本文鏈接:http://sikaile.net/kejilunwen/shuiwenshuili/1528545.html