摻氣坎及階面首級(jí)臺(tái)階對(duì)階梯溢流壩水力特性影響研究
本文關(guān)鍵詞:摻氣坎及階面首級(jí)臺(tái)階對(duì)階梯溢流壩水力特性影響研究 出處:《昆明理工大學(xué)》2016年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 數(shù)值模擬 摻氣坎 階面首級(jí)臺(tái)階 水力特性
【摘要】:在大單寬流量和高水頭的泄洪建筑物中,寬尾墩+階梯溢流壩+消力池一體化消能工憑借其具有高效消能率和節(jié)約工程成本等優(yōu)點(diǎn)而被廣泛應(yīng)用,但在實(shí)際工程實(shí)踐中發(fā)現(xiàn),泄流在階梯溢流壩前幾級(jí)階梯處易產(chǎn)生空化現(xiàn)象,空化氣泡沿水流移動(dòng)在下游高壓區(qū)破裂,固壁面易發(fā)生空蝕破壞。本文基于X電站,引用水氣兩相流VOF方法的RNGk-ε模型,采用幾何重建方式對(duì)水氣面附近進(jìn)行插值以及利用PISO算法和非定常流算法對(duì)不同摻氣坎及階面首級(jí)臺(tái)階體型的一體化消能工三維流場(chǎng)進(jìn)行數(shù)值模擬,并通過(guò)模型實(shí)驗(yàn)驗(yàn)證了數(shù)值模擬的可靠性,主要研究成果如下:1、摻氣坎角度及高度對(duì)階梯溢流壩水力特性的影響(1)不同摻氣坎體型下的各方案計(jì)算水深、壓強(qiáng)沿程分布走勢(shì)一致。(2)在其他因素一定時(shí),各方案階梯水平及垂直近壁面平均摻氣濃度C沿程略有波動(dòng)但整體呈減小趨勢(shì),且在后幾級(jí)階梯處保持不變;各方案負(fù)壓起始位置略有不同,且均存在由摻氣濃度突變產(chǎn)生的負(fù)壓絕對(duì)值驟增區(qū):隨著摻氣坎角度的增大,摻氣空腔長(zhǎng)度、最大負(fù)壓絕對(duì)值及摻氣濃度C隨其增大;隨著摻氣坎高度的增大,最大負(fù)壓絕對(duì)值隨之增大,摻氣空腔長(zhǎng)度及摻氣濃度C隨其減小(3)各方案臨底流速V均沿水流移動(dòng)方向逐漸減。合苈恃厮饕苿(dòng)方向逐漸增大,在消力池前段增幅較大,在尾坎附近增幅較小。在其他因素一定時(shí),隨著摻氣坎角度的增大,相同斷面臨底流速V隨之減小,消能率隨其增大:隨著摻氣坎高度的減小,相同斷面臨底流速V隨之減小,消能率隨其增大。2、階面首級(jí)臺(tái)階高度及臺(tái)面角對(duì)階梯溢流壩水力特性的影響(1)不同階面首級(jí)臺(tái)階高度條件下和不同階面首級(jí)臺(tái)階臺(tái)面角條件下的各方案計(jì)算水深、壓強(qiáng)沿程變化趨勢(shì)一致。(2)在其他因素一定時(shí),各方案階梯水平及垂直近壁面摻氣濃度C、階梯水平及垂直近壁面負(fù)壓分布走勢(shì)一致:各方案均存在由摻氣濃度突變產(chǎn)生的負(fù)壓絕對(duì)值驟增區(qū);隨著階面首級(jí)臺(tái)階高度的增大,最大負(fù)壓絕對(duì)值隨之減小,摻氣空腔長(zhǎng)度和相同斷面摻氣濃度隨其增大;隨著階面首級(jí)臺(tái)階臺(tái)面角的增大,摻氣空腔長(zhǎng)度、摻氣濃度隨其減小,最大負(fù)壓絕對(duì)值隨之增大。(3)各方案臨底流速V沿水流移動(dòng)方向逐漸減小;消能率沿水流移動(dòng)方向逐漸增大,在消力池前段增幅較大,在尾坎附近增幅較小。在其他因素一定時(shí),隨著階面首級(jí)臺(tái)階高度的增大,相同斷面臨底流速V隨之減小,消能率隨其增大;隨著階面首級(jí)臺(tái)階臺(tái)面角的減小,相同斷面臨底流速V隨之減小,消能率隨其增大,即臺(tái)面角下跌10。更利于能量的耗散。經(jīng)綜合分析,摻氣坎角度為11.3。、高度為1m和階面首級(jí)臺(tái)階高度為2m的過(guò)渡銜接方式較優(yōu)。
[Abstract]:In the large single wide discharge and high head flood discharge buildings, the integrated energy dissipator of stepped spillway dam with wide tail pier is widely used because of its advantages of high efficiency energy dissipation rate and saving engineering cost. However, in the practical engineering practice, it is found that the cavitation is easy to occur at the several steps of the stepped spillway in front of the stepped spillway dam, and the cavitation bubble moves along the flow and ruptures in the high pressure area downstream. Cavitation erosion is easy to occur on the solid wall. In this paper, the RNGk- 蔚 model of water-gas two-phase flow VOF method is introduced based on X power station. The geometric reconstruction method is used to interpolate the water surface and the PISO algorithm and the unsteady flow algorithm are used to simulate the three-dimensional flow field of the integrated energy dissipator with different aerator and step shape. The reliability of the numerical simulation is verified by the model experiment. The main research results are as follows: 1. The influence of aerator angle and height on hydraulic characteristics of stepped spillway dam. 1) calculation of water depth under different aeration sill shapes and uniform distribution of pressure along the path. 2) when other factors are fixed, the influence of aeration angle and height on hydraulic characteristics of stepped spillway dam is discussed. The average aeration concentration C along the horizontal and vertical wall of each scheme fluctuates slightly but decreases as a whole and remains unchanged at the later steps. The starting position of negative pressure in each scheme is slightly different, and there is a sharp increase region of negative pressure absolute value caused by the sudden change of aeration concentration: with the increase of aeration angle, the length of aeration cavity is increased. The maximum negative pressure absolute value and aeration concentration C increase with it. With the increase of aeration height, the absolute value of maximum negative pressure increases. With the decrease of aeration cavity length and aeration concentration C) the flow velocity V of each scheme gradually decreased along the direction of flow movement; the energy dissipation rate gradually increased along the direction of water flow and increased greatly in the front section of stilling pool. When other factors are fixed, with the increase of aeration angle, the bottom velocity V of the same fault decreases, and the energy dissipation rate increases with the increase of aeration height. The bottom velocity V of the same fault decreases and the energy dissipation rate increases with it. The influence of step height and Mesa Angle on hydraulic characteristics of stepped Spillway Dam (1) the calculation of water depth under the condition of different step height and different step angle. The variation trend of pressure along the course is the same. (2) when other factors are fixed, the aeration concentration C of each scheme is horizontal and vertical near the wall. The distribution of negative pressure on the horizontal and vertical wall is the same: there is a sharp increase in the absolute value of negative pressure caused by the sudden change of aeration concentration in each scheme. With the increase of the step height of the first step, the absolute value of the maximum negative pressure decreases, and the aeration cavity length and the aeration concentration of the same section increase with it. With the increase of the angle of the first step of the step, the length of the aeration cavity and the aeration concentration decrease with it, and the absolute value of the maximum negative pressure increases with the increase of the absolute value of the maximum negative pressure. The energy dissipation rate increases gradually along the direction of water flow. The increase is larger in the front section of the stilling pool and smaller in the vicinity of the tail ridge. When other factors are fixed, with the increase of step height of the first step of the step. The bottom velocity V of the same fault decreases and the energy dissipation rate increases with it. With the decrease of the bench angle of the first step of the step, the bottom velocity V of the same fault decreases, and the energy dissipation rate increases with it, that is, the table angle decreases by 10. It is more favorable for energy dissipation. The transition connection mode is better when the aeration angle is 11.3.The height is 1m and the step height of the first step is 2m.
【學(xué)位授予單位】:昆明理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:TV652.1;TV135.2
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李永業(yè);孫西歡;李飛;王銳;;不同型號(hào)的管道車在管道中運(yùn)移的水力特性[J];排灌機(jī)械工程學(xué)報(bào);2010年02期
2 潘露;王川;李國(guó)敬;;柱體周圍水力特性的數(shù)值模擬研究[J];水電能源科學(xué);2010年11期
3 趙德志;;船閘輸水水力特性曲線計(jì)算[J];水道港口;1991年01期
4 楊永森,楊永全;自由跌流的水力特性[J];水科學(xué)進(jìn)展;2000年02期
5 田嘉寧;急流彎道的水力特性試驗(yàn)研究[J];陜西水力發(fā)電;2000年01期
6 馬德宏;滯后對(duì)石棉水力特性的影響[J];甘肅科學(xué)學(xué)報(bào);1995年04期
7 耿克勤,陳鳳翔,劉光廷,陳興華;巖體裂隙滲流水力特性的實(shí)驗(yàn)研究[J];清華大學(xué)學(xué)報(bào)(自然科學(xué)版);1996年01期
8 沙際德,白清俊;粘性土坡面細(xì)溝流的水力特性試驗(yàn)研究[J];泥沙研究;2001年06期
9 趙海;吳換營(yíng);蔡付林;徐進(jìn)超;;分段低壓自流輸水系統(tǒng)中無(wú)壓連接段水力特性三維數(shù)值模擬[J];水電能源科學(xué);2010年09期
10 亨利·彼·西蒙司;石朝輝;;山水流量對(duì)河口水力特性的若干影響[J];人民長(zhǎng)江;1957年10期
相關(guān)會(huì)議論文 前6條
1 傅金祥;趙玉華;張振義;;蓄水裝置水力特性對(duì)水質(zhì)的影響研究[A];中國(guó)土木工程學(xué)會(huì)水工業(yè)分會(huì)第四屆理事會(huì)第一次會(huì)議論文集[C];2002年
2 陳金剛;張景飛;劉大全;;充填裂隙水力特性研究進(jìn)展[A];中國(guó)力學(xué)學(xué)會(huì)學(xué)術(shù)大會(huì)'2009論文摘要集[C];2009年
3 潘欽;劉亞坤;倪漢根;楊濤;;雙管式溢流塔水力特性試驗(yàn)研究[A];2007重大水利水電科技前沿院士論壇暨首屆中國(guó)水利博士論壇論文集[C];2007年
4 黃本勝;陳秋月;邱靜;劉月琴;吉紅香;;有水葫蘆的河道水力特性試驗(yàn)研究[A];第二十屆全國(guó)水動(dòng)力學(xué)研討會(huì)文集[C];2007年
5 韓連超;潘艷華;王姝;;寬尾墩聯(lián)合消能工體型選擇及水力特性的研究[A];中國(guó)水利學(xué)會(huì)2003學(xué)術(shù)年會(huì)論文集[C];2003年
6 楊帆;郭軍;陳惠泉;;明渠岸邊側(cè)向取水口的三維數(shù)值計(jì)算[A];第三屆全國(guó)水力學(xué)與水利信息學(xué)大會(huì)論文集[C];2007年
相關(guān)重要報(bào)紙文章 前1條
1 本報(bào)通訊員 毛兆民;“摻氣分流墩水力特性研究”獲陜西省科技一等獎(jiǎng)[N];中國(guó)水利報(bào);2003年
相關(guān)博士學(xué)位論文 前4條
1 韓冬;濕潤(rùn)速度與化學(xué)材料對(duì)土壤水力特性的影響及機(jī)理研究[D];內(nèi)蒙古農(nóng)業(yè)大學(xué);2016年
2 張昌兵;孔板型內(nèi)消能工水力特性試驗(yàn)研究及數(shù)值模擬[D];四川大學(xué);2003年
3 郭春立;水輪機(jī)筒閥多缸協(xié)同關(guān)閉過(guò)程水力特性與控制策略研究[D];天津大學(xué);2009年
4 曹繼文;明渠岸邊橫向取水的三維水力特性及簡(jiǎn)易防沙措施試驗(yàn)研究[D];中國(guó)水利水電科學(xué)研究院;2004年
相關(guān)碩士學(xué)位論文 前10條
1 呂緒明;水流自摻氣與底部強(qiáng)迫摻氣水力特性研究[D];昆明理工大學(xué);2015年
2 巨淑君;90°彎道中T型丁壩的水力特性研究[D];福州大學(xué);2013年
3 張靚;摻氣坎及階面首級(jí)臺(tái)階對(duì)階梯溢流壩水力特性影響研究[D];昆明理工大學(xué);2016年
4 王新麗;正槽溢洪道整體水力特性試驗(yàn)研究和數(shù)值模擬[D];太原理工大學(xué);2012年
5 張樂(lè)元;管道車在不同導(dǎo)流條長(zhǎng)度條件下運(yùn)移的水力特性研究[D];太原理工大學(xué);2010年
6 曾甄;迷宮堰水力特性綜合研究及其應(yīng)用[D];河海大學(xué);2004年
7 金俊偉;清水池水力特性研究及應(yīng)用[D];清華大學(xué);2005年
8 鄭政;多孔并聯(lián)分段低壓輸水系統(tǒng)的水力特性和控制研究[D];天津大學(xué);2006年
9 裴少鋒;閘前漩渦水力特性及消除措施試驗(yàn)研究[D];大連理工大學(xué);2012年
10 耿運(yùn)生;自潰式迷宮堰的水力特性及應(yīng)用研究[D];中國(guó)水利水電科學(xué)研究院;2004年
,本文編號(hào):1438320
本文鏈接:http://sikaile.net/kejilunwen/shuiwenshuili/1438320.html