膠凝原油顆粒運動規(guī)律和變形特征的數(shù)值模擬研究
[Abstract]:The hydraulic suspension transportation technology of cementitious crude oil particles is a new breakthrough in unheated crude oil gathering and transportation. In this method, the cementitious crude oil is mixed into water near or below the freezing point by fluidization treatment device to form cementitious particles of different sizes. Hydraulic suspension transportation is carried out by carrying solidified crude oil particles with low temperature water, so as to greatly reduce the heat loss in the transportation process and achieve the purpose of energy saving. In this process, water-cementitious crude oil two-phase flow is a very complex dynamic system, which contains a variety of nonlinear non-equilibrium characteristics. Cementitious crude oil particles have not only the definite interface of solid, but also the characteristics of yield-pseudoplastic fluid. The movement law and deformation characteristics of cementitious crude oil particles affect the effect of hydraulic suspension transportation. It is of great significance to master the movement law and deformation characteristics of cementitious crude oil particles in the process of hydraulic suspension transportation in order to promote the development of this technology. In this paper, the method of combining theoretical analysis with numerical simulation is adopted. The movement law and deformation characteristics of cementitious crude oil particles in the process of hydraulic suspension transportation are studied. (1) the movement law of cementitious crude oil particles in the process of hydraulic suspension transportation is studied. The continuous phase adopts k? In the turbulence model, the discrete phase adopts the DPM model, and the drag coefficient model of the cementitious crude oil particles in the water-cementitious crude oil two-phase flow established by the research group is used to calculate the drag force. The inlet velocity distribution of the pipe section is defined by UDF and simulated by Fluent software. The trajectory and y direction velocity of cementitious crude oil particles under different conditions were obtained, and the influencing factors such as particle size, particle density, release position, initial particle velocity and flow velocity were analyzed. The results show that the smaller the particle size and the higher the density of cementitious crude oil particles, the smaller the terminal floating speed reached by the particles in the vertical direction, and the less likely it is to collide with the wall. The larger the flow velocity is, the greater the displacement of cementitious crude oil particles along the length of the pipe is in the same time, and the less likely it is to collide with the wall. The horizontal velocity of particles synchronizes with the velocity change of flow field, which is mainly affected by the release position and independent of the initial velocity of particles. According to the intersection principle of the motion trajectory of the two particles and neglecting the acceleration process of the particles, the collision model of the two particles is established, and the theoretical calculation of the model is carried out by using Matlab software. The calculated results are compared with those simulated by Fluent software. (2) the deformation characteristics of cementitious crude oil particles during hydraulic suspension transportation are studied. The rheological equation of cementitious crude oil is given by testing the Rheological properties of crude oil. The interfacial changes of cementitious crude oil particles are traced by VOSET method, and the deformation of single cementitious crude oil particles in the process of hydraulic suspension transportation is simulated by Fluent software. The effects of crude oil temperature, particle size, interfacial tension and flow velocity on deformation were analyzed. The results show that the deformation of cementitious crude oil particles is affected by the shear action of flow field, the yield characteristics and shear dilution of crude oil. In the central region with low shear rate, the shear stress acting on cementitious crude oil particles is difficult to overcome its yield value. It is difficult to deform; When the particles are close to the wall, the shear force is greater than the yield value. Under the influence of shear dilution, the viscosity decreases and the deformation increases rapidly, and the lower the temperature is, the greater the viscosity is, the smaller the deformation degree is. The interfacial tension prevents the deformation of particles, the smaller the interfacial tension is, the greater the deformation degree of particles is, and the smaller the particle size of cementitious crude oil is, the smaller the deformation degree is. Finally, the influence of dimensionless number We on deformation is analyzed. The greater the We, the more obvious the inertia force relative to the interfacial tension effect, and the greater the deformation degree of particles.
【學(xué)位授予單位】:東北石油大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TE81
【相似文獻】
相關(guān)期刊論文 前10條
1 梁百申;郭慕孫;;振蕩流體中顆粒運動的初步研究[J];化工冶金;1982年01期
2 趙彬;;室內(nèi)顆粒運動和分布的模擬方法[J];建筑熱能通風(fēng)空調(diào);2006年05期
3 岑可法;樊建人;駱仲泱;嚴(yán)建華;倪明江;;循環(huán)流化床內(nèi)顆粒運動的預(yù)測與測量[J];化學(xué)反應(yīng)工程與工藝;1989年04期
4 歐陽潔,李靜海;模擬氣固兩相流動非均勻結(jié)構(gòu)的顆粒運動分解軌道模型[J];中國科學(xué)(B輯);1999年01期
5 張坤媛;于才淵;程茜;;脈沖氣流干燥管內(nèi)固體顆粒運動軌跡分析[J];干燥技術(shù)與設(shè)備;2014年02期
6 岑可法 ,樊建人 ,羅衛(wèi)紅;流化床中氣泡爆破時顆粒運動的理論及試驗研究[J];浙江大學(xué)學(xué)報(自然科學(xué)版);1987年06期
7 張玉春;王振波;金有海;馬藝;;超短接觸旋流反應(yīng)器內(nèi)顆粒軌跡數(shù)值研究[J];石油化工設(shè)備;2012年04期
8 張金發(fā),,范銘,葛仕福;大顆粒流化床內(nèi)顆粒運動循環(huán)時間的研究[J];東南大學(xué)學(xué)報;1994年S1期
9 傅源方;;Levitation現(xiàn)象研究進展[J];化工科技;2007年02期
10 王英杰;陽寧;金星;;垂直管道中固體顆粒運動軌跡研究[J];金屬礦山;2011年05期
相關(guān)會議論文 前7條
1 梁云;郝國防;馬恩祥;蔡志鵬;;強制渦型分級機中顆粒運動模型研究[A];第四屆全國顆粒制備與處理學(xué)術(shù)會議論文集[C];1995年
2 劉宇;徐曉亮;黃海明;;漩渦合并過程中顆粒運動的數(shù)值模擬[A];北京力學(xué)會第十六屆學(xué)術(shù)年會論文集[C];2010年
3 王仲琦;陳翰;劉意;郭彥懿;;炸藥驅(qū)動惰性顆粒運動過程數(shù)值模擬研究[A];第九屆全國沖擊動力學(xué)學(xué)術(shù)會議論文集(下冊)[C];2009年
4 張東興;;結(jié)構(gòu)附連的氣粒兩項流層的顆粒運動研究[A];第十屆全國結(jié)構(gòu)工程學(xué)術(shù)會議論文集第Ⅲ卷[C];2001年
5 武錦濤;陳紀(jì)忠;陽永榮;;移動床中固體顆粒運動的實驗研究和“運動模型”的修正[A];第一屆全國化學(xué)工程與生物化工年會論文摘要集(上)[C];2004年
6 曹翌佳;舒?zhèn)ソ?王靖岱;陽永榮;;聲波法測量顆粒速度的研究[A];中國化工學(xué)會2005年石油化工學(xué)術(shù)年會論文集[C];2005年
7 楊延強;易維明;;豎直管內(nèi)顆粒運動規(guī)律的實驗研究[A];走中國特色農(nóng)業(yè)機械化道路——中國農(nóng)業(yè)機械學(xué)會2008年學(xué)術(shù)年會論文集(上冊)[C];2008年
相關(guān)博士學(xué)位論文 前4條
1 馬征;農(nóng)業(yè)物料仿生防堵篩分中的摩擦與顆粒運動研究[D];江蘇大學(xué);2015年
2 武錦濤;移動床中固體顆粒運動與傳熱的研究[D];浙江大學(xué);2005年
3 張浩;多相流場中顆粒運動及約束面磨損的CFD-DEM耦合模型[D];湘潭大學(xué);2012年
4 李響;外場作用下流化床中氣固兩相流動數(shù)值模擬[D];哈爾濱工業(yè)大學(xué);2010年
相關(guān)碩士學(xué)位論文 前7條
1 李友行;膠凝原油顆粒運動規(guī)律和變形特征的數(shù)值模擬研究[D];東北石油大學(xué);2015年
2 劉非;彎曲水流中固液兩相運動夾角的研究[D];上海交通大學(xué);2012年
3 李聯(lián)波;旋流噴動氣固兩相流場中顆粒運動行為研究[D];天津大學(xué);2006年
4 王路;基于PDF理論的顆粒兩階矩Lagrange模型及數(shù)值模擬[D];杭州電子科技大學(xué);2013年
5 郭春麗;風(fēng)沙運輸中湍流風(fēng)場與顆粒運動的耦合機理[D];太原理工大學(xué);2012年
6 丁經(jīng)緯;基于高速攝像法的流化床內(nèi)顆粒運動特性研究[D];浙江大學(xué);2003年
7 王家興;均勻磁場作用下的液固流化床流動特性研究[D];哈爾濱工業(yè)大學(xué);2011年
本文編號:2487545
本文鏈接:http://sikaile.net/kejilunwen/shiyounenyuanlunwen/2487545.html