渦輪鉆具能量傳輸系統(tǒng)及葉型優(yōu)化
[Abstract]:As the core technology of downhole power drilling, turbodrill has a wide range of applications in the field of petroleum industry. Foreign countries benefit from the historical accumulation of industry, which makes it far ahead in the fields of complex geology and inclined well drilling by using turbodrill tools combined with embedded diamond and downhole drilling measurement system. The study of turbodrill tools is helpful to strengthen the detection and exploitation level of deep-sea oil fields, shale gas and so on. Turbine drill tool vortex is a kind of downhole power device in which high pressure mud flows directly through turbine joints arranged in turn by several stator rotors and drives the drill bit directly after the turbine rotates. It has high speed and excellent stability, and there is no rubber in the whole structure. Therefore, turbodrill is widely used in inclined well drilling with high stability and drilling demand under extreme working conditions. In order to design turbine drill tools that meet the requirements, the following work has been carried out in this paper: one dimensional calculation is used to determine the number of turbine joints, geometric size of single section, pressure drop and other parameters of turbine drill tools as a whole. After that, the three-dimensional modeling design of turbine joint blade is carried out by Numeca. The designed dynamic and static cascades are used to verify the working performance of turbodrill tools, and the flow of turbodrill tools is analyzed. The results of numerical simulation show that the turbine drill designed without considering the viscosity of drilling fluid in one dimensional design has insufficient working ability due to low efficiency and insufficient flow rate, which is difficult to meet the design requirements. In order to meet the design requirements and optimize the performance of turbine joints, the original design scheme is optimized and improved, and a more suitable design scheme is selected after analyzing the flow and load distribution. After changing the design law of runner width to the scheme of approximate linear reduction, the efficiency in turbine is increased from 72.6% to 80.3%, so that the scheme can meet the design requirements. The thickness and bending are analyzed comprehensively. After the influence of the middle arc on the blade profile, the turbine section can output 2383W power under the condition of pressure drop to 72.5KPa, which meets the design requirement of 2353W single section power. At the same time, there is a certain potential to do work. When the driving pressure is increased to the design constraint limit 95KPa, the output power of the single turbodrill can be increased to 3611W when the rotating speed is constant. Finally, the performance of turbodrill under variable working conditions is discussed, and the effects of working conditions on the performance of turbodrill are simply compared. The change of viscosity to the work performance of blade is more complex. Turbine drilling tool has high viscosity because of the requirement of drilling fluid chip carrying capacity. The effect of viscosity on properties is not linear, and mainly affects efficiency and pressure drop.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TE921.2
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 姚堅(jiān)毅;劉寶林;王瑜;;渦輪鉆具水力設(shè)計(jì)與分析方法應(yīng)用現(xiàn)狀研究[J];石油礦場機(jī)械;2012年03期
2 尹麗;;優(yōu)選渦輪材質(zhì)和優(yōu)化渦輪鉆具結(jié)構(gòu) 提高其馬達(dá)使用壽命[J];河南科技;2013年16期
3 ;國外使用渦輪鉆具定向彎曲鉆孔[J];探礦工程;1966年02期
4 胡澤明;;減速渦輪鉆具[J];石油鉆采機(jī)械通訊;1976年04期
5 胡澤明;;低速大扭矩渦輪鉆具的原理與應(yīng)用[J];石油鉆采機(jī)械通訊;1976年05期
6 ;渦輪鉆具在煤礦的鉆進(jìn)試驗(yàn)[J];煤礦安全;1978年01期
7 郭忠順;; 地?zé)釡u輪鉆具即將用于油田[J];石油礦場機(jī)械;1981年06期
8 章?lián)P烈;;國外渦輪鉆具發(fā)展近況[J];石油礦場機(jī)械;1984年05期
9 胡澤明;獨(dú)聯(lián)體國家渦輪鉆具技術(shù)水平評析[J];石油機(jī)械;1993年06期
10 胡澤明;劉志洲;;渦輪鉆具小級高渦輪設(shè)計(jì)的新發(fā)展[J];石油礦場機(jī)械;1993年02期
相關(guān)會議論文 前2條
1 許福東;張曉東;華北莊;符達(dá)良;;180渦輪鉆具用同步減速器研制[A];2004年石油裝備年會暨慶祝江漢機(jī)械研究所建所40周年學(xué)術(shù)研討會論文集[C];2004年
2 劉孝光;馮進(jìn);張慢來;龍東平;丁凌云;;基于CFD分析的渦輪鉆具力學(xué)性能預(yù)測[A];2004年石油裝備年會暨慶祝江漢機(jī)械研究所建所40周年學(xué)術(shù)研討會論文集[C];2004年
相關(guān)重要報(bào)紙文章 前1條
1 曾 尉;論文只是科研成果的副產(chǎn)品[N];光明日報(bào);2002年
相關(guān)博士學(xué)位論文 前2條
1 譚春飛;深井超深井渦輪鉆具復(fù)合鉆井提高鉆速技術(shù)研究[D];中國地質(zhì)大學(xué)(北京);2012年
2 汪凱;渦輪鉆具滾動軸承故障診斷系統(tǒng)的研究[D];西南石油大學(xué);2016年
相關(guān)碩士學(xué)位論文 前10條
1 賀恒;帶水力平衡系統(tǒng)的渦輪鉆具研究[D];長江大學(xué);2016年
2 劉巖;渦輪鉆具試驗(yàn)臺架檢測控制系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)[D];中國地質(zhì)大學(xué)(北京);2016年
3 余世敏;基于響應(yīng)面法的渦輪鉆具葉片優(yōu)化設(shè)計(jì)與研究[D];西南石油大學(xué);2016年
4 楊韜;氣體渦輪鉆具變幾何研究及加工實(shí)現(xiàn)[D];西南石油大學(xué);2016年
5 王龍;井下渦輪鉆具渦輪葉片造型及優(yōu)化研究[D];西安石油大學(xué);2016年
6 趙洪波;渦輪鉆具渦輪葉片設(shè)計(jì)及水力性能仿真優(yōu)化研究[D];中國地質(zhì)大學(xué)(北京);2012年
7 薛鵬;渦輪鉆具定轉(zhuǎn)子軸向間隙調(diào)整的可視化研究[D];中國石油大學(xué);2009年
8 董小虎;適用于連續(xù)管的小尺寸渦輪鉆具葉型研究[D];長江大學(xué);2014年
9 王慶倉;渦輪鉆具葉片的逆向分析及流場仿真研究[D];西南石油大學(xué);2015年
10 張毅;渦輪鉆具密封設(shè)計(jì)與實(shí)驗(yàn)研究[D];西南石油大學(xué);2011年
,本文編號:2487095
本文鏈接:http://sikaile.net/kejilunwen/shiyounenyuanlunwen/2487095.html