基于Markov特征的油氣管道泄漏檢測與定位方法
發(fā)布時間:2018-10-12 07:30
【摘要】:針對傳統(tǒng)的基于壓力信號的管道泄漏檢測方法誤報率和漏報率偏高,同時定位誤差較大的缺點,設(shè)計了一種基于Markov特征的管道泄漏檢測與定位方法。首先,將管道壓力數(shù)據(jù)構(gòu)造為Markov鏈的形式,并提取其動態(tài)特征;然后,將所提取的特征應(yīng)用于Neyman-Pearson異常檢測方法之中,檢測全部壓力數(shù)據(jù)樣本的狀態(tài),并對檢測到的異常樣本進(jìn)行同源信號匹配,修正檢測結(jié)果;最后,將相似性定位方法與連續(xù)小波定位方法結(jié)合,確定管道首末兩端響應(yīng)壓力變化的時間差,并根據(jù)管道長度和壓力波傳輸速度等信息,對泄漏源定位。所提方法能應(yīng)用于小泄漏和緩慢泄漏的檢測與定位,易于實現(xiàn),誤報率與漏報率顯著降低,定位精度提高。通過對歷史數(shù)據(jù)的分析,驗證了所提方法的可行性和有效性。
[Abstract]:Aiming at the disadvantages of the traditional pipeline leakage detection method based on pressure signal, the false alarm rate and false alarm rate are on the high side, and the location error is large, a pipeline leakage detection and location method based on Markov feature is designed. Firstly, the pipeline pressure data is constructed as a Markov chain and its dynamic features are extracted. Then, the extracted features are applied to the Neyman-Pearson anomaly detection method to detect the status of all the pressure data samples. The homologous signals of detected abnormal samples are matched to correct the detection results. Finally, the time difference between the two ends of pipeline response to pressure changes is determined by combining the similarity localization method with the continuous wavelet localization method. According to the information of pipeline length and pressure wave transmission velocity, the leakage source is located. The proposed method can be used to detect and locate small leakage and slow leakage, which is easy to realize, and the false alarm rate and false alarm rate are significantly reduced, and the positioning accuracy is improved. Through the analysis of historical data, the feasibility and validity of the proposed method are verified.
【作者單位】: 東北大學(xué)信息科學(xué)與工程學(xué)院;
【基金】:國家自然科學(xué)基金(61473069,61627809,61374124) 中央高;究蒲袠I(yè)務(wù)費專項資金(N140405002)項目資助
【分類號】:TE973.6
[Abstract]:Aiming at the disadvantages of the traditional pipeline leakage detection method based on pressure signal, the false alarm rate and false alarm rate are on the high side, and the location error is large, a pipeline leakage detection and location method based on Markov feature is designed. Firstly, the pipeline pressure data is constructed as a Markov chain and its dynamic features are extracted. Then, the extracted features are applied to the Neyman-Pearson anomaly detection method to detect the status of all the pressure data samples. The homologous signals of detected abnormal samples are matched to correct the detection results. Finally, the time difference between the two ends of pipeline response to pressure changes is determined by combining the similarity localization method with the continuous wavelet localization method. According to the information of pipeline length and pressure wave transmission velocity, the leakage source is located. The proposed method can be used to detect and locate small leakage and slow leakage, which is easy to realize, and the false alarm rate and false alarm rate are significantly reduced, and the positioning accuracy is improved. Through the analysis of historical data, the feasibility and validity of the proposed method are verified.
【作者單位】: 東北大學(xué)信息科學(xué)與工程學(xué)院;
【基金】:國家自然科學(xué)基金(61473069,61627809,61374124) 中央高;究蒲袠I(yè)務(wù)費專項資金(N140405002)項目資助
【分類號】:TE973.6
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 楊海;王輝;;管道泄漏檢測技術(shù)的研究[J];科技信息;2010年01期
2 李文杰;運用油氣管道泄漏檢測及定位技術(shù),減少環(huán)境污染[J];山東環(huán)境;2000年S1期
3 魏忠昕,鄒潤,張勇,賈宗賢;聲波檢測技術(shù)用于管道泄漏檢測[J];油氣田地面工程;2003年06期
4 王嵐,王毅;油管道泄漏檢測定位技術(shù)[J];化工設(shè)備與管道;2004年03期
5 李文軍,王學(xué)英;油氣管道泄漏檢測與定位技術(shù)的現(xiàn)狀及展望[J];煉油技術(shù)與工程;2005年09期
6 周琰,靳世久,張昀超,孫立瑛;管道泄漏檢測分布式光纖傳感技術(shù)研究[J];光電子·激光;2005年08期
7 崔謙,靳世久,王立坤,魏茂安,周琰;基于序貫檢驗的管道泄漏檢測方法[J];石油學(xué)報;2005年04期
8 丁輝;王立;張貝克;陳舜琮;;現(xiàn)代管道泄漏檢測技術(shù)[J];現(xiàn)代科學(xué)儀器;2005年06期
9 瞿f,
本文編號:2265294
本文鏈接:http://sikaile.net/kejilunwen/shiyounenyuanlunwen/2265294.html
最近更新
教材專著