基于剛?cè)狁詈夏P偷你@具自動(dòng)輸送裝置動(dòng)態(tài)特性研究
[Abstract]:In recent years, with the rapid development of China's economy and science and technology, the requirements for marine drilling technology and continental scientific drilling technology are more and more high. Compared with offshore drilling, the research investment of continental scientific drilling technology is obviously less, and drilling tools. A large proportion of the transportation and discharge work on the bottom drilling table is still carried out with the traditional drilling tool migration device in the 1960s and 1970s. This device is mainly manual work, and the whole migration process can be completed by the cooperation of four or five people. The workers' work efficiency is low and the labor intensity is high. The safety guarantee is low, the safety accident is easy to happen, and the operation process lacks the effective protection to the drill pipe wire buckle, and the drill pipe is easy to be damaged. In addition, with the development of modern terrestrial scientific drilling technology in the direction of deep wells, horizontal wells with long reach, and ultra-deep wells, for example, the coring depth of continental scientific drilling has reached more than 10,000 meters, the drilling site will carry and discharge drilling tools in large quantities. Therefore, drilling site requires high degree of mechanization and automation, strong transportation capacity, safety and reliability, high stability to carry out the transportation of drilling tools. The automatic conveying device of drill pipe developed by our research group has high technical requirements, the whole operation process is safe, and the degree of automation is high. Only 1 or 2 people can carry out the whole operation process, and the time of one drill pipe conveyance is 50 seconds to three minutes. At the same time, the working intensity of the workers is reduced and the conveying efficiency of the drill pipe is improved, thus the time for shortening the operation period of the whole drilling system and the degree of mechanization and automation of the land drilling rig are increased. Therefore, the automatic conveyer of drilling tools has a high research value. Based on this, this paper focuses on the dynamic characteristics of the system under the rigid-flexible coupling model through system dynamic modeling and simulation analysis, taking the automatic conveying device of drilling tools as the research object. Firstly, according to the design requirements and work flow of the automatic conveyer, the overall structure and working process of the device are expounded. Based on the kinematics analysis of the lifting system, the main control mode is studied, and the lifting mode of the main body is determined, and the relevant parameters of the key components in the system are analyzed and calculated. Then, the partition principle of rigid and flexible parts of the whole machine is analyzed in detail, and the MNF neutral file of flexible parts of the system is established. The corresponding constraints, driving and contact collision attributes are added to the simulation model. The rigid-flexible coupling model of the whole machine is established in ADAMS software. Then, through the numerical solution and simulation analysis of the vibration modes of the braces, the characteristics of the main modes of each order in the easy frequency range are studied. It lays a theoretical foundation for predicting the actual vibration response of the structure under various external or internal vibration sources in this frequency band, and compares the modal information of the flexible body in the previous chapter, which verifies the correctness of the flexible body modeling. Harmonic response analysis is carried out to study the response of external excitation to various frequencies. The buckling analysis of the key components of the system is carried out, and the stability information related to its structure is obtained. Then, the rigid-flexible coupling dynamic modeling of the whole machine is carried out and the main reasons for the dynamic stiffening of the system are studied. Through the rigid-flexible coupling simulation analysis of the whole machine, the dynamic characteristics under the rigid-flexible coupling model and the multi-rigid body model are compared and studied. The kinematics and dynamics data of the system under coupling effect are obtained. Finally, the correctness of the simulation results and the practical performance of the device are verified by experimental verification.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TE951
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉言松;王芳;陳莉;周明貴;楊勇強(qiáng);;弧面分度凸輪機(jī)構(gòu)剛?cè)狁詈戏抡婺P偷慕J];陜西科技大學(xué)學(xué)報(bào);2007年04期
2 劉言松;曹巨江;張?jiān)?;剛?cè)狁詈蠙C(jī)械系統(tǒng)動(dòng)力學(xué)仿真[J];陜西科技大學(xué)學(xué)報(bào);2006年03期
3 范彬;劉明;陸新江;黃明輝;;重型鍛壓機(jī)剛?cè)狁詈舷到y(tǒng)動(dòng)力學(xué)分析[J];鍛壓技術(shù);2013年04期
4 師素娟;劉儒杰;王利英;劉煈;康艷艷;;地下鏟運(yùn)機(jī)動(dòng)臂剛?cè)狁詈蟿?dòng)力學(xué)分析[J];煤礦機(jī)械;2014年06期
5 魯明;胡聰良;孫偉;馮霏;邱晨;;基于剛?cè)狁詈系膶?dǎo)軌滑塊移動(dòng)副建模[J];中國(guó)工程機(jī)械學(xué)報(bào);2010年03期
6 石珍強(qiáng);徐培民;;ADAMS剛?cè)狁詈隙囿w系統(tǒng)動(dòng)力學(xué)建模[J];安徽工業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版);2007年01期
7 岳東;寇子明;馮曉;;聯(lián)絡(luò)巷掘進(jìn)機(jī)伸縮內(nèi)臂的剛?cè)狁詈蟿?dòng)力學(xué)分析[J];礦山機(jī)械;2013年08期
8 喬雙鵬;任家駿;王傳武;;基于剛?cè)狁詈系腅BZ220掘進(jìn)機(jī)叉形架動(dòng)力學(xué)分析[J];煤礦機(jī)械;2013年11期
9 肖峰;姜月嬌;李二鵬;肖軍;朱燈林;;精密沖床肘桿機(jī)構(gòu)剛?cè)狁詈夏P偷姆抡娣治鯷J];機(jī)械設(shè)計(jì)與制造;2012年01期
10 李輝;;基于ADAMS的剛?cè)狁詈细叻狡胶Y動(dòng)力學(xué)仿真[J];糧食加工;2012年06期
相關(guān)會(huì)議論文 前10條
1 胡文華;張偉;曹東興;;彈性支撐梁的剛?cè)狁詈蟿?dòng)力學(xué)分析[A];第十四屆全國(guó)非線性振動(dòng)暨第十一屆全國(guó)非線性動(dòng)力學(xué)和運(yùn)動(dòng)穩(wěn)定性學(xué)術(shù)會(huì)議摘要集與會(huì)議議程[C];2013年
2 趙國(guó)威;吳志剛;;柔性空間結(jié)構(gòu)大范圍自由運(yùn)動(dòng)的剛?cè)狁詈蟿?dòng)力學(xué)建模與分析[A];中國(guó)力學(xué)大會(huì)——2013論文摘要集[C];2013年
3 徐培民;石珍強(qiáng);包家漢;王宏光;;搖桿轉(zhuǎn)向架式月球車剛?cè)狁詈辖<胺治鯷A];第九屆全國(guó)振動(dòng)理論及應(yīng)用學(xué)術(shù)會(huì)議論文摘要集[C];2007年
4 徐培民;石珍強(qiáng);包家漢;王宏光;;搖桿轉(zhuǎn)向架式月球車剛?cè)狁詈辖<胺治鯷A];第九屆全國(guó)振動(dòng)理論及應(yīng)用學(xué)術(shù)會(huì)議論文集[C];2007年
5 趙國(guó)威;吳志剛;;柔性空間結(jié)構(gòu)大范圍自由運(yùn)動(dòng)的剛?cè)狁詈蟿?dòng)力學(xué)建模與分析[A];第十四屆全國(guó)非線性振動(dòng)暨第十一屆全國(guó)非線性動(dòng)力學(xué)和運(yùn)動(dòng)穩(wěn)定性學(xué)術(shù)會(huì)議摘要集與會(huì)議議程[C];2013年
6 趙飛云;洪嘉振;;矩形薄板的剛?cè)狁詈蟿?dòng)力學(xué)系統(tǒng)的建模理論研究[A];中國(guó)力學(xué)學(xué)會(huì)學(xué)術(shù)大會(huì)'2005論文摘要集(下)[C];2005年
7 鄭彤;章定國(guó);;梯形三角形板與變厚度板剛?cè)狁詈蟿?dòng)力學(xué)分析[A];中國(guó)力學(xué)大會(huì)——2013論文摘要集[C];2013年
8 劉鑄永;洪嘉振;;柔性薄板的剛?cè)狁詈蟿?dòng)力學(xué)[A];中國(guó)力學(xué)學(xué)會(huì)學(xué)術(shù)大會(huì)'2009論文摘要集[C];2009年
9 ;SAMCEF Mecano在航空航天領(lǐng)域的應(yīng)用[A];第七屆中國(guó)CAE工程分析技術(shù)年會(huì)暨2011全國(guó)計(jì)算機(jī)輔助工程(CAE)技術(shù)與應(yīng)用高級(jí)研討會(huì)論文集[C];2011年
10 高浩;戴煥云;;集裝箱平車高頻彈性振動(dòng)分析[A];第十一屆全國(guó)非線性振動(dòng)學(xué)術(shù)會(huì)議暨第八屆全國(guó)非線性動(dòng)力學(xué)和運(yùn)動(dòng)穩(wěn)定性學(xué)術(shù)會(huì)議論文集[C];2007年
相關(guān)博士學(xué)位論文 前3條
1 吳艷紅;旋轉(zhuǎn)葉片剛?cè)狁詈舷到y(tǒng)動(dòng)力學(xué)研究[D];哈爾濱工程大學(xué);2011年
2 高浩;車輛系統(tǒng)剛?cè)狁詈蟿?dòng)力學(xué)仿真方法及仿真平臺(tái)研究[D];西南交通大學(xué);2013年
3 李崔春;撓性航天器剛?cè)狁詈蟿?dòng)力學(xué)建模與姿態(tài)控制技術(shù)的研究[D];北京理工大學(xué);2014年
相關(guān)碩士學(xué)位論文 前10條
1 孫中振;剛?cè)狁詈隙囿w包裝運(yùn)輸系統(tǒng)逆子結(jié)構(gòu)分析[D];江南大學(xué);2015年
2 張巍耀;撓性航天器剛?cè)狁詈蟿?dòng)力學(xué)建模及動(dòng)態(tài)特性研究[D];哈爾濱工業(yè)大學(xué);2015年
3 張青林;基于剛?cè)狁詈系恼噭?dòng)力學(xué)仿真及懸架參數(shù)優(yōu)化[D];重慶理工大學(xué);2015年
4 王亮;面向剛?cè)狁詈舷到y(tǒng)的SiPESC平臺(tái)仿真與優(yōu)化[D];大連理工大學(xué);2015年
5 李鑫;基于推土機(jī)底盤的推樹裝置動(dòng)力學(xué)分析及強(qiáng)度研究[D];吉林大學(xué);2016年
6 劉蕓;典型脈膜剛?cè)狁詈辖Y(jié)構(gòu)昆蟲翅膀的形態(tài)特征及力學(xué)性能[D];吉林大學(xué);2016年
7 李貴宇;基于軌道振動(dòng)的車輪多邊形機(jī)理研究[D];西南交通大學(xué);2016年
8 史陽陽;基于剛?cè)狁詈系腻^絞機(jī)結(jié)構(gòu)優(yōu)化設(shè)計(jì)及試驗(yàn)研究[D];南京理工大學(xué);2016年
9 張志宇;基于ADAMS的四足機(jī)器人虛擬樣機(jī)仿真及剛?cè)狁詈戏治鯷D];哈爾濱工業(yè)大學(xué);2016年
10 王毅恒;具有有限彈性部件的機(jī)械結(jié)構(gòu)動(dòng)力學(xué)分析[D];哈爾濱工業(yè)大學(xué);2016年
,本文編號(hào):2233789
本文鏈接:http://sikaile.net/kejilunwen/shiyounenyuanlunwen/2233789.html