基于噪聲分析法的石油泵站機(jī)組故障自動(dòng)監(jiān)測(cè)技術(shù)研究
[Abstract]:The single unit of petroleum pumping station is composed of a motor and a centrifugal pump, which is the core equipment of petroleum gathering and transportation production process. In order to avoid accidents caused by equipment failure, it is of great significance to establish a real-time monitoring and fault diagnosis system for oil pump units. Oil pump unit is accompanied with vibration and noise in operation state, and this particular operating noise contains abundant information of equipment state, which can be used as the basis for objectively evaluating the equipment running state and fault diagnosis. At present, the application of acoustic diagnosis technology in equipment fault diagnosis has become a new research hotspot in the field, although the mechanism of noise generation, the cause of typical faults and the mechanism of noise aberration caused by motor and centrifugal pump are basically clear. However, how to identify the typical faults accurately from the whole running noise still needs further study. In this paper, the automatic fault monitoring technology of oil pumping station based on noise analysis method is proposed. It is expected to improve the reliability of operation state evaluation and the accuracy of fault judgment of oil pump unit from the technical level. The subject combines virtual instrument technology, acoustic detection and analysis technology, based on the structure of the oil pump unit and noise characteristic parameters, and takes the unit running noise collected from the oil pumping station as the analysis sample. Systematic research is carried out by combining theory with experiment. In this paper, the noise spectrum variation caused by cavitation fault is discussed, and the detection method of cavitation fault and the discrimination algorithm in the initial stage of cavitation are further determined. In the process of specific test and research, it is necessary to determine the initial noise comparison analysis sample according to the cavitation noise characteristics of specific units in order to accurately distinguish the initial state of cavitation failure in the process of on-line real-time monitoring of oil pump faults. Based on the characteristic frequency analysis, an initial noise sample synthesis method for oil pump cavitation fault is proposed. According to the noise variation mechanism of oil pump cavitation fault, the noise spectrum of the initial cavitation fault is captured in the sample of operating noise of FS100-65-200 unit collected from oil gathering and transportation production site, and N single frequency signals are extracted according to the mode of amplitude decrement. Based on LabVIEW, the initial noise sample synthesis of cavitation fault is realized. The realization is divided into three steps: characteristic frequency selection and calibration, corresponding amplitude setting, and multi-frequency sample synthesis of characteristic noise in the initial stage of cavitation failure. Experiments have proved that, The adjustment step of the synthetic frequency is 1 Hz, the maximum deviation between the given frequency and the reference frequency is 0.32 Hz, and the maximum relative error ratio of the synthetic signal to the reference signal is 1.90. This method has repeatability for different types of oil pump units. And practical maneuverability.
【學(xué)位授予單位】:東北石油大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TE977
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉祥樓;楊西岳;朱桐;姜繼玉;于波;;點(diǎn)聲源環(huán)境噪聲聲場(chǎng)區(qū)域二維圖形化表征方法研究[J];安全與環(huán)境學(xué)報(bào);2015年06期
2 劉祥樓;朱桐;王曉東;;單一點(diǎn)聲源對(duì)空間立面近場(chǎng)輻射噪聲圖形表征優(yōu)化算法研究[J];自動(dòng)化與儀器儀表;2015年09期
3 劉峻嵩;;旋轉(zhuǎn)機(jī)械常見故障的振動(dòng)特征綜述[J];技術(shù)與教育;2015年03期
4 高波;孫鑫愷;楊敏官;張寧;;離心泵內(nèi)空化流動(dòng)誘導(dǎo)非定常激勵(lì)特性[J];機(jī)械工程學(xué)報(bào);2014年16期
5 金劍;潘宏俠;;虛擬儀器技術(shù)在機(jī)械設(shè)備狀態(tài)監(jiān)測(cè)與故障診斷中的應(yīng)用[J];煤礦機(jī)械;2014年08期
6 余靚;;離心泵的操作與常見故障解決方法[J];中國(guó)石油和化工標(biāo)準(zhǔn)與質(zhì)量;2014年08期
7 劉麗艷;楊洋;劉們宏;譚蔚;;基于頻譜分析方法的超聲空化場(chǎng)三維重建及其分布[J];天津大學(xué)學(xué)報(bào)(自然科學(xué)與工程技術(shù)版);2014年11期
8 周硯梅;;談離心泵的工作原理與檢修[J];黑龍江科技信息;2012年30期
9 彭昌友;黃青華;;點(diǎn)源和線源合成平面聲場(chǎng)的分析[J];電聲技術(shù);2012年10期
10 王瑋;秦衍智;;離心泵的汽蝕原因及預(yù)防措施[J];化工技術(shù)與開發(fā);2012年06期
相關(guān)博士學(xué)位論文 前2條
1 魯文波;基于聲場(chǎng)空間分布特征的機(jī)械故障診斷方法及其應(yīng)用研究[D];上海交通大學(xué);2012年
2 呂琛;基于噪聲分析的內(nèi)燃機(jī)主軸承狀態(tài)監(jiān)測(cè)與故障診斷[D];大連理工大學(xué);2002年
相關(guān)碩士學(xué)位論文 前9條
1 孫悅;輸油泵機(jī)組運(yùn)行噪聲分析及狀態(tài)監(jiān)測(cè)系統(tǒng)研究[D];東北石油大學(xué);2016年
2 徐慧;液壓助力轉(zhuǎn)向油泵噪聲信號(hào)的小波分析研究[D];華南理工大學(xué);2013年
3 仇威;基于BP神經(jīng)網(wǎng)絡(luò)水泵電機(jī)的故障診斷[D];湖北工業(yè)大學(xué);2012年
4 侯永強(qiáng);注水泵機(jī)組在線監(jiān)測(cè)與故障診斷系統(tǒng)研究[D];大慶石油學(xué)院;2010年
5 王戩;虛擬式噪聲分析儀的研制[D];重慶大學(xué);2009年
6 孫楠楠;大型旋轉(zhuǎn)機(jī)械振動(dòng)監(jiān)測(cè)與故障診斷知識(shí)體系的研究與實(shí)現(xiàn)[D];重慶大學(xué);2006年
7 李井水;基于振動(dòng)信號(hào)分析的油田注水機(jī)組故障診斷研究[D];大慶石油學(xué)院;2005年
8 尹成紅;離心泵的故障診斷方法及故障評(píng)定[D];大慶石油學(xué)院;2005年
9 梁瑞年;輸油泵安全監(jiān)測(cè)與故障診斷系統(tǒng)研究[D];北京科技大學(xué);2005年
,本文編號(hào):2233318
本文鏈接:http://sikaile.net/kejilunwen/shiyounenyuanlunwen/2233318.html