層狀鹽巖儲(chǔ)氣庫(kù)建腔期安全綜合評(píng)價(jià)及多因素優(yōu)化研究
[Abstract]:Salt rock reservoirs are used as energy storage media at home and abroad because of their excellent properties such as water solubility, good creep, damage self-recovery, low permeability and large plastic deformation capacity, high utilization rate of salt rock caverns, small area occupied, large instantaneous throughput and easy excavation. Surrounding rock mass has better safety, but the salt rock reserve layer in our country has the characteristics of lower salt rock grade, more interbeds, shallow burial, thin rock thickness and so on, and the cavity construction process is invisible, unable to control the shape of the cavity; in the long-term brine immersion, the mechanical properties of salt rock change; insoluble or insoluble interbeds collapse. Salt rock gas storage cavern construction is a complex system engineering, reasonable selection of cavern construction technology and method is possible to get the design form, including the choice of freshwater cycle, the combination of cavity string, the determination of freshwater injection and displacement, roof and floor protection. Protection measures, cavity shape detection, oil cushion position control and supporting ground equipment, etc. Only when these problems are correctly and reasonably solved in the process of cavity construction, can the built cavity meet the requirements of gas storage. The main contents and achievements of this paper are as follows: (1) The principle of water-soluble cavity construction in layered underground gas storage and the technology of single well convection water-soluble cavity construction are analyzed. The main factors affecting the dissolution rate of salt minerals, including the grade of salt minerals, are introduced. The internal factors such as structure, water solubility, composition and solution concentration, movement state, spatial position of solution surface, temperature and pressure, and properties of solvent were simulated. The key factors include: circulation mode, salt rock grade, water injection and discharge, pipe string combination, number of interlayer and position of oil cushion. The simulation results show that the cavity shape is very irregular if the Cavity-making technology is not properly selected. 3. Through in-depth analysis of the typical accident causes of layered salt rock underground gas storage. Combined with the actual geological conditions of Jintan salt cavern gas storage and the influencing factors in the process of cavern construction, the paper analyzes the dangerous sources which may cause the accidents in the cavern construction period of the salt cavern gas storage from the aspects of salt rock and interlayer characteristics, stratum characteristics, cavity design, construction control, supporting facilities and human errors, and establishes the cavern construction of stratified salt rock gas storage. Based on the qualitative analysis of the fault tree, all possible approaches and basic causes of the accident during the cavity construction period are obtained. 4. The risk factors obtained from the fault tree are classified according to their different properties and are divided into three evaluation units, i.e. mechanical parameters of salt rock, interlayer parameters and cavity construction parameters. The safety evaluation system of layered salt rock gas reservoir during cavity construction period is established. Based on the previous experimental research and numerical simulation results of the members of this research group, the index scoring model of the safety evaluation system is established. _Based on variable weight and relative difference function, the safety evaluation of the proposed M well salt rock gas reservoir during cavity construction period is carried out. The index constant weight is adjusted by the variable weight method, and the variable weight is changed with the change of the evaluation value. It can highlight the impact of the obvious change of the evaluation value of individual index on the evaluation results. If the evaluation value of individual index is very low, the weight will be greatly improved after the variable weight treatment. The membership degree of the grade is determined by the relative difference function, which can reflect the importance of some influencing factors in the evaluation system. _According to the three controllable factors of the layered salt gas storage cavern construction period: the position of interlayer (which can be realized by adjusting the buried depth of the cavern), the ratio of height to diameter of the cavern, and the spacing between ore pillars are optimized. The interlayer position has three levels: 1/4H, 3/4H, 1/2. H, in which H is the cavity height; the ratio of height to diameter is set at three levels: 1.0D, 1.5D, 2.0D; the width of pillar is set at three levels: 1.0D, 1.5D, 2.0D, D is the cavity diameter. The stress and the average stress of the interlayer and the displacement of the apex, the bottom, the waist and the interlayer of the cavity are taken as the experimental indexes. The values of height-diameter ratio and pillar width are brought into the evaluation model of height-diameter ratio and pillar width in Chapter 4, and the scores are both 100, which is the best level, which verifies the accuracy of numerical simulation.
【學(xué)位授予單位】:重慶大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TE88
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李果;梁光川;尹平;謝云杰;;儲(chǔ)氣庫(kù)的儲(chǔ)量估算[J];西南石油大學(xué)學(xué)報(bào);2007年04期
2 天工;;國(guó)家儲(chǔ)氣庫(kù)已選定11個(gè)地點(diǎn)[J];天然氣工業(yè);2010年12期
3 朱榮強(qiáng);;天然氣儲(chǔ)氣庫(kù)儲(chǔ)氣規(guī)模的確定[J];山東化工;2013年01期
4 ;我國(guó)最大天然氣儲(chǔ)氣庫(kù)投產(chǎn)[J];供熱制冷;2013年08期
5 尹虎琛;陳軍斌;蘭義飛;劉志軍;;北美典型儲(chǔ)氣庫(kù)的技術(shù)發(fā)展現(xiàn)狀與啟示[J];油氣儲(chǔ)運(yùn);2013年08期
6 ;我國(guó)最大天然氣儲(chǔ)氣庫(kù)投產(chǎn)[J];石油化工腐蝕與防護(hù);2013年05期
7 張旭;;儲(chǔ)氣庫(kù)火炬裝置系統(tǒng)設(shè)計(jì)[J];化工管理;2013年22期
8 孫伯英;;世界上最深最大的水層儲(chǔ)氣庫(kù)[J];天然氣工業(yè);1984年04期
9 王頌秋;多孔性儲(chǔ)氣庫(kù)儲(chǔ)氣壓力的探討[J];煤氣與熱力;1996年05期
10 武魏楠;;中國(guó)儲(chǔ)氣庫(kù)的急與慢[J];能源;2013年11期
相關(guān)會(huì)議論文 前10條
1 李建東;鄒紅麗;徐維霞;;儲(chǔ)氣庫(kù)建設(shè)與地?zé)豳Y源開(kāi)發(fā)的關(guān)系[A];全國(guó)地?zé)岙a(chǎn)業(yè)可持續(xù)發(fā)展學(xué)術(shù)研討會(huì)論文集[C];2005年
2 高樹(shù)生;楊產(chǎn)雷;班凡生;單文文;;巖鹽儲(chǔ)氣庫(kù)溶腔內(nèi)夾層數(shù)值模擬研究[A];第九屆全國(guó)巖石力學(xué)與工程學(xué)術(shù)大會(huì)論文集[C];2006年
3 莫江;梁衛(wèi)國(guó);趙陽(yáng)升;;層狀鹽巖儲(chǔ)氣庫(kù)建造夾層穩(wěn)定性研究[A];第十屆全國(guó)巖石力學(xué)與工程學(xué)術(shù)大會(huì)論文集[C];2008年
4 高延法;張長(zhǎng)福;邢飛;;廢棄礦井地下空間儲(chǔ)氣技術(shù)分析[A];第三屆全國(guó)巖土與工程學(xué)術(shù)大會(huì)論文集[C];2009年
5 班凡生;朱維耀;單文文;高樹(shù)生;;巖鹽儲(chǔ)氣庫(kù)水溶建腔管柱提升優(yōu)化研究[A];中國(guó)力學(xué)學(xué)會(huì)學(xué)術(shù)大會(huì)'2005論文摘要集(下)[C];2005年
6 嚴(yán)銘卿;;壓縮天然氣儲(chǔ)氣分區(qū)原理[A];《煤氣與熱力》雜志編輯委員會(huì)'2005燃?xì)鉄崃夹g(shù)研討會(huì)論文集[C];2005年
7 班凡生;熊偉;高樹(shù)生;單文文;;巖鹽儲(chǔ)氣庫(kù)水溶建腔影響因素綜合分析研究[A];第九屆全國(guó)巖石力學(xué)與工程學(xué)術(shù)大會(huì)論文集[C];2006年
8 李富國(guó);劉永志;;車用CNG充裝站儲(chǔ)氣規(guī)模與裝置應(yīng)用優(yōu)化探討Ⅱ[A];全國(guó)天然氣汽車加氣站技術(shù)研討會(huì)論文集[C];2002年
9 王同濤;閆相禎;楊秀娟;楊恒林;;多夾層鹽巖蠕變實(shí)驗(yàn)及鹽穴儲(chǔ)氣庫(kù)完套管柱受力分析[A];2010年海峽兩岸材料破壞/斷裂學(xué)術(shù)會(huì)議暨第十屆破壞科學(xué)研討會(huì)/第八屆全國(guó)MTS材料試驗(yàn)學(xué)術(shù)會(huì)議論文集[C];2010年
10 李建君;李龍;屈丹安;;鹽穴儲(chǔ)氣庫(kù)溶腔參數(shù)優(yōu)化方案的研究[A];低碳經(jīng)濟(jì)促進(jìn)石化產(chǎn)業(yè)科技創(chuàng)新與發(fā)展——第六屆寧夏青年科學(xué)家論壇論文集[C];2010年
相關(guān)重要報(bào)紙文章 前10條
1 記者 汪亞萍 通訊員 王凌梅;大港鉆采院成功設(shè)計(jì)10個(gè)儲(chǔ)氣庫(kù)[N];中國(guó)石油報(bào);2010年
2 蒙輝;采油六廠地下有個(gè)天然氣“儲(chǔ)氣庫(kù)”[N];黑龍江日?qǐng)?bào);2004年
3 任繼凱;儲(chǔ)氣庫(kù):北京平穩(wěn)用氣“福氣”之源[N];中國(guó)石油報(bào);2007年
4 李健飛;金壇儲(chǔ)氣庫(kù)工程打響“上黨戰(zhàn)役”[N];石油管道報(bào);2006年
5 古柏;大港儲(chǔ)氣庫(kù)成功應(yīng)對(duì)華北第一波用氣高峰[N];中國(guó)建設(shè)報(bào);2009年
6 本報(bào)記者 駱毅;備戰(zhàn)氣荒 中石油擬建十大儲(chǔ)氣庫(kù)[N];21世紀(jì)經(jīng)濟(jì)報(bào)道;2010年
7 沈素麗;設(shè)計(jì)公司在中石油首期儲(chǔ)氣庫(kù)建設(shè)培訓(xùn)班作報(bào)告[N];石油管道報(bào);2010年
8 通訊員 陳瀟奕;金壇儲(chǔ)氣庫(kù)安全設(shè)施通過(guò)國(guó)家驗(yàn)收[N];中國(guó)石油報(bào);2008年
9 記者 楚海虹;金壇儲(chǔ)氣庫(kù)加快增容增儲(chǔ)[N];中國(guó)石油報(bào);2009年
10 記者 楚海虹 姜斯雄;科技創(chuàng)新推進(jìn)金壇儲(chǔ)氣庫(kù)建設(shè)[N];中國(guó)石油報(bào);2009年
相關(guān)博士學(xué)位論文 前7條
1 趙克烈;注采氣過(guò)程中地下鹽巖儲(chǔ)氣庫(kù)可用性研究[D];中國(guó)科學(xué)院研究生院(武漢巖土力學(xué)研究所);2009年
2 王同濤;多夾層鹽巖體中儲(chǔ)氣庫(kù)圍巖變形規(guī)律及安全性研究[D];中國(guó)石油大學(xué);2011年
3 王皆明;裂縫性潛山油藏儲(chǔ)氣庫(kù)注采機(jī)理研究[D];中國(guó)海洋大學(xué);2013年
4 曾順鵬;高含水后期油藏改建儲(chǔ)氣庫(kù)滲流機(jī)理及應(yīng)用研究[D];西南石油學(xué)院;2005年
5 趙志成;鹽巖儲(chǔ)氣庫(kù)水溶建腔流體輸運(yùn)理論及溶腔形態(tài)變化規(guī)律研究[D];中國(guó)科學(xué)院研究生院(滲流流體力學(xué)研究所);2003年
6 班凡生;鹽穴儲(chǔ)氣庫(kù)水溶建腔優(yōu)化設(shè)計(jì)研究[D];中國(guó)科學(xué)院研究生院(滲流流體力學(xué)研究所);2008年
7 陳鋒;鹽巖力學(xué)特性及其在儲(chǔ)氣庫(kù)建設(shè)中的應(yīng)用研究[D];中國(guó)科學(xué)院研究生院(武漢巖土力學(xué)研究所);2006年
相關(guān)碩士學(xué)位論文 前10條
1 莫江;層狀鹽巖體儲(chǔ)氣庫(kù)建造及運(yùn)行穩(wěn)定性研究[D];太原理工大學(xué);2009年
2 李賢良;含硫氣藏型儲(chǔ)氣庫(kù)注采工藝的研究[D];西安石油大學(xué);2015年
3 韓中陽(yáng);互層狀鹽巖儲(chǔ)氣庫(kù)地表沉降機(jī)理與數(shù)值模擬研究[D];鄭州大學(xué);2015年
4 楊金龍;儲(chǔ)氣庫(kù)固井水泥漿體系配方研究[D];東北石油大學(xué);2015年
5 肖火林;雙6儲(chǔ)氣庫(kù)鉆采工程設(shè)計(jì)研究[D];東北石油大學(xué);2015年
6 郭巍;鹽穴儲(chǔ)氣庫(kù)水溶造腔過(guò)程中的腔體穩(wěn)定性研究[D];武漢輕工大學(xué);2015年
7 劉偉莎;層狀鹽巖儲(chǔ)氣庫(kù)建腔期安全綜合評(píng)價(jià)及多因素優(yōu)化研究[D];重慶大學(xué);2015年
8 王新勝;鹽巖儲(chǔ)氣庫(kù)運(yùn)營(yíng)期穩(wěn)定性研究[D];重慶大學(xué);2009年
9 周道勇;高含水后期油藏及含水構(gòu)造改建儲(chǔ)氣庫(kù)研究[D];西南石油大學(xué);2006年
10 張藝;金壇鹽礦老腔改建儲(chǔ)氣庫(kù)可行性研究[D];重慶大學(xué);2011年
,本文編號(hào):2212672
本文鏈接:http://sikaile.net/kejilunwen/shiyounenyuanlunwen/2212672.html