天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 石油論文 >

高壓擠注條件下疏松砂巖儲(chǔ)層破壞模式及模擬研究

發(fā)布時(shí)間:2018-08-23 19:02
【摘要】:疏松砂巖油氣藏管外充填防砂技術(shù)主要包括塑性擠壓充填和壓裂充填兩種模式,兩種充填模式的選擇取決于對(duì)施工條件、地質(zhì)情況的綜合判斷。但長(zhǎng)期以來對(duì)于高壓擠注充填條件下疏松砂巖地層的破壞機(jī)理認(rèn)識(shí)不透徹,對(duì)破壞模式?jīng)]有建立系統(tǒng)的識(shí)別方法,理論研究與實(shí)際應(yīng)用脫節(jié),導(dǎo)致工藝技術(shù)和施工參數(shù)不甚合理,影響了高壓管外充填一體化防砂技術(shù)的進(jìn)一步發(fā)展。本文綜合考慮高壓擠注條件下疏松砂巖地層的復(fù)雜變形過程,建立了高壓擠注條件下疏松砂巖地層應(yīng)力分布規(guī)律的多孔介質(zhì)模型,并將其推廣到任意井身結(jié)構(gòu)的定向井或水平井?紤]高壓擠注充填條件下攜砂液瞬態(tài)溫度效應(yīng),探討熱應(yīng)力對(duì)擠注條件下疏松砂巖巖石破壞模式的影響。結(jié)果表明,攜砂液的瞬態(tài)溫度效應(yīng)對(duì)地層破壞臨界值及地層破壞形態(tài)的影響較小,工程計(jì)算中可以忽略不計(jì)。本文在繼承前人研究成果的基礎(chǔ)上,將疏松砂巖地層巖石劃分為脆性巖石、韌性巖石和可壓縮性巖石三種類型,分別分析了三種巖石宏觀破壞差異性在巖石力學(xué)特性方面的表現(xiàn)。從巖石本身特性和人為因素兩個(gè)方面闡述了高壓擠注條件下疏松砂巖地層破壞形態(tài)的影響因素。通過分析認(rèn)為脆性巖石一般服從拉伸破壞準(zhǔn)則,韌性巖石受剪切破壞準(zhǔn)則的控制,而可壓縮性巖石則受到壓實(shí)破壞機(jī)理的控制。基于彈-理想塑性本構(gòu)模型分析高壓擠注條件下韌性巖石的破壞模式,建立了韌性地層破壞后地層形態(tài)的判別方法、韌性巖石的破壞臨界值計(jì)算方法、人工裂縫啟裂臨界壓力計(jì)算方法和裂縫延伸壓力計(jì)算方法。通過模擬計(jì)算和礦場(chǎng)實(shí)際數(shù)據(jù)分析表明:Mohr-Coulomb模型能較好的反映地層的剪切破壞過程,韌性地層高壓擠注條件下形成有效人工裂縫的前提是井壁處徑向應(yīng)力為中間應(yīng)力,否則,地層周圍將產(chǎn)生較為均質(zhì)的剪切破碎帶,無法形成壓裂剪切裂縫。在分析高壓擠注過程中可壓縮性巖石微觀變形規(guī)律的基礎(chǔ)上,應(yīng)用修正劍橋模型建立了高壓擠注條件下可壓縮性巖石的井底塑性破壞臨界壓力值計(jì)算模型,以及一定壓力條件下的井底塑性壓實(shí)破壞半徑預(yù)測(cè)方法。通過模擬研究表明:地層應(yīng)力非均質(zhì)性是導(dǎo)致疏松砂巖可壓縮性巖石壓實(shí)破壞非均質(zhì)性的根本原因,壓實(shí)破壞臨界井底壓力及塑性壓實(shí)破壞半徑隨著井周角的變化呈現(xiàn)周期性的變化規(guī)律,在最大主應(yīng)力方向上的巖石首先發(fā)生壓實(shí)破壞,井底壓力越大,塑性壓實(shí)破壞半徑越大。論文的研究成果對(duì)于進(jìn)行地層壓裂充填可行性分析以及高壓擠注充填參數(shù)的設(shè)計(jì)具有重要的借鑒意義,對(duì)于未來形成一體化擠注充填現(xiàn)場(chǎng)施工技術(shù)提供了基礎(chǔ)和條件。
[Abstract]:The sand control technology of loose sandstone reservoir is mainly composed of plastic extrusion filling and fracturing filling. The selection of the two filling modes depends on the comprehensive judgment of the construction conditions and geological conditions. However, for a long time, the failure mechanism of loose sandstone formation under the condition of high pressure extrusion and filling has not been fully understood, there is no systematic identification method for the failure mode, and the theoretical research is out of touch with the practical application. As a result, the technology and construction parameters are not reasonable, which affects the further development of the integrated sand control technology. In this paper, considering the complex deformation process of loose sandstone formation under high pressure extrusion, a porous medium model for stress distribution of loose sandstone formation under high pressure extrusion condition is established. It is extended to directional wells or horizontal wells with arbitrary shaft structure. Considering the transient temperature effect of sand carrying fluid under the condition of high pressure extrusion and filling, the effect of thermal stress on the failure mode of loose sandstone rock under extrusion condition is discussed. The results show that the transient temperature effect of sand carrying fluid has little effect on the critical value of formation failure and formation failure form, which can be ignored in engineering calculation. In this paper, the loose sandstone strata are divided into three types: brittle rock, ductile rock and compressible rock. The performance of three kinds of rock macroscopic failure difference in rock mechanics characteristic is analyzed respectively. In this paper, the influence factors of loose sandstone formation failure form under the condition of high pressure extrusion are expounded from the characteristics of rock itself and human factors. It is considered that brittle rock is generally subjected to tensile failure criterion, ductile rock is controlled by shear failure criterion, and compressible rock is controlled by compaction failure mechanism. Based on the elastic-ideal plastic constitutive model, the failure model of ductile rock under high pressure extrusion is analyzed, and a method to distinguish the formation morphology and calculate the critical value of failure of ductile rock is established. The method of calculating the critical pressure of artificial crack initiation and the method of calculating fracture extension pressure. Through simulation calculation and field data analysis, it is shown that the 1: Mohr-Coulomb model can better reflect the shear failure process of the formation. The premise of forming effective artificial fractures under the condition of high pressure extrusion in the ductile formation is that the radial stress at the wellbore is intermediate stress, otherwise, There will be homogeneous shear fracture zone around the formation, which can't form fracturing and shear fracture. On the basis of analyzing the microscopic deformation law of compressible rock during high pressure extrusion, a model for calculating the critical pressure of bottom hole plastic failure of compressible rock under high pressure extrusion is established by applying the modified Cambridge model. And the prediction method of bottom hole plastic compaction failure radius under certain pressure condition. The simulation results show that the heterogeneity of formation stress is the fundamental cause of compaction and destruction of unconsolidated sandstone compressible rock. The critical bottom pressure of compaction failure and the radius of plastic compaction failure change periodically with the change of well circumference angle. The rock in the direction of maximum principal stress first occurs compaction failure, and the larger the bottom hole pressure, the larger the radius of plastic compaction failure. The research results of this paper have important reference significance for the feasibility analysis of formation fracturing and filling and the design of high pressure injection filling parameters, and provide the foundation and condition for the formation of integrated injection and filling field construction technology in the future.
【學(xué)位授予單位】:中國(guó)石油大學(xué)(華東)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TE358.1

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 李彥龍;董長(zhǎng)銀;阿雪慶;陳新安;張清華;許拓拓;;熱采水平井近井地應(yīng)力分布及影響因素分析[J];石油天然氣學(xué)報(bào);2014年11期

2 李彥龍;董長(zhǎng)銀;李懷文;邵力飛;陳新安;;熱采水平井塑性破壞半徑預(yù)測(cè)方法及應(yīng)用[J];東北石油大學(xué)學(xué)報(bào);2014年05期

3 賈鎖剛;董長(zhǎng)銀;武龍;隆佳佳;馮勝利;陳君;阿雪慶;;疏松砂巖油藏水平井管外地層塑性擠壓充填模擬[J];中國(guó)石油大學(xué)學(xué)報(bào)(自然科學(xué)版);2013年06期

4 董長(zhǎng)銀;劉春苗;武龍;馮勝利;張曉斌;隆佳佳;;高壓擠注條件下水平井管外地層破壞模式及其判別方法[J];中國(guó)石油大學(xué)學(xué)報(bào)(自然科學(xué)版);2012年05期

5 卞曉冰;張士誠(chéng);張景臣;王飛;;疏松砂巖稠油油藏壓裂井裂縫參數(shù)優(yōu)新方法[J];中國(guó)科學(xué):技術(shù)科學(xué);2012年06期

6 王偉章;閆相禎;陳宗毅;;基于有限元法的高壓擠壓礫石充填數(shù)值模擬[J];濰坊學(xué)院學(xué)報(bào);2011年06期

7 吳建平;;基于聲波測(cè)井資料的疏松砂巖可壓性研究[J];西安石油大學(xué)學(xué)報(bào)(自然科學(xué)版);2009年03期

8 王偉章;閆相禎;;高壓擠壓防砂充填帶形態(tài)仿真模擬[J];濰坊學(xué)院學(xué)報(bào);2009年02期

9 閆相禎;王偉章;楊秀娟;李勇;張先鋒;;近井地帶高壓擠壓?jiǎn)栴}的解析解[J];中國(guó)石油大學(xué)學(xué)報(bào)(自然科學(xué)版);2008年03期

10 張啟漢;張士誠(chéng);黃曉東;;端部脫砂壓裂充填防砂設(shè)計(jì)及其在澀北氣田的應(yīng)用[J];中國(guó)石油大學(xué)學(xué)報(bào)(自然科學(xué)版);2007年06期

相關(guān)博士學(xué)位論文 前3條

1 劉用海;寧波軟土工程特性及其本構(gòu)模型應(yīng)用研究[D];浙江大學(xué);2008年

2 王偉章;疏松砂巖高壓擠壓礫石充填理論及工程應(yīng)用研究[D];中國(guó)石油大學(xué);2008年

3 遲明杰;砂土的剪脹性及本構(gòu)模型的研究[D];北京交通大學(xué);2008年

相關(guān)碩士學(xué)位論文 前4條

1 曹巖甫;網(wǎng)紋紅土劍橋模型參數(shù)的試驗(yàn)研究[D];中南大學(xué);2013年

2 武龍;水平井管內(nèi)管外充填一體化研究[D];中國(guó)石油大學(xué);2011年

3 周恩平;考慮小應(yīng)變的硬化土本構(gòu)模型在基坑變形分析中的應(yīng)用[D];哈爾濱工業(yè)大學(xué);2010年

4 楊麗娟;巖石細(xì)觀統(tǒng)計(jì)損傷數(shù)值模型及在地下工程中的應(yīng)用[D];河海大學(xué);2007年

,

本文編號(hào):2199627

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/shiyounenyuanlunwen/2199627.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶48126***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com