天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 石油論文 >

振動管式鉆井液密度檢測系統(tǒng)的建立及其性能研究

發(fā)布時間:2018-08-11 12:12
【摘要】:鉆井過程中,鉆井液具有十分重要的作用,能否精確地檢測出鉆井液的密度以實現(xiàn)對鉆井液各組成成分的物料比進行控制關系到能否安全、高效地鉆井。目前,市場上存在多種用于液體密度檢測的設備和裝置,如浮子式密度計、靜壓式密度計、電容式流體密度計以及放射性同位素密度計以及振動管式液體密度計等。然而,上述各種用于檢測液體密度的設備和裝置均有其使用的局限性,此外,又由于鉆井現(xiàn)場較為惡劣的環(huán)境因素,所以,上述各種密度檢測設備和裝置均不能很好地滿足對鉆井液的密度進行精確、安全、高效檢測的要求。為了能夠實現(xiàn)對鉆井液的密度進行精確、安全、高效檢測的要求,在設計液體密度計時,應充分考慮鉆井現(xiàn)場的振動條件和溫度條件,同時,結合鉆井液的流速條件、壓力條件以及鉆井液的物理性質和化學性質等,最終,提出并建立了振動管式鉆井液密度檢測系統(tǒng),并在此基礎上,對檢測系統(tǒng)的核心部件——振動管式液體密度計進行了設計,開發(fā)出一種懸臂梁式鉆井液密度計,并對該密度計的各項性能進行了有限元分析。完成的主要工作如下:(1)總結并分析了國內外液體密度檢測設備和裝置的研究現(xiàn)狀,確定了選擇振動管式液體密度計來實現(xiàn)對鉆井液密度進行檢測的方案。結合鉆井現(xiàn)場的振動條件和溫度條件以及鉆井液的壓力條件和流速條件等各項限制條件,提出并建立了振動管式鉆井液密度檢測系統(tǒng)。(2)綜合考慮振動管式鉆井液密度檢測系統(tǒng)中各組成模塊的功用,可知該鉆井液密度檢測系統(tǒng)的各項性能可由振動管式鉆井液密度計的各項性能表征。結合鉆井液的物理和化學性質,提出了一種新型的振動管式液體密度計——以懸臂梁和測量管組成的部件為敏感元件的懸臂梁式鉆井液密度計,同時,完成了該密度計的設計計算。(3)對懸臂梁和測量管組成的敏感元件S2進行了模態(tài)分析,得出了敏感元件S2的第一階振型及其對應的固有頻率,確定了激振頻率的下限值為1591.0Hz,上限值為1691.0Hz,步長為0.01Hz。對該密度計的殼體進行了模態(tài)分析,分析結果表明,殼體不會與懸臂梁和測量管組成的敏感元件S2產生共振,驗證了懸臂梁式鉆井液密度計結構和尺寸設計的合理性。(4)對敏感元件S2進行了諧響應分析,分析結果表明,在激振力的作用下,敏感元件S2的等效應力和等效應變均主要集中在懸臂梁的a端和b端相過度的位置附近,即當懸臂梁式鉆井液密度計工作時,懸臂梁的a端與b端相過度的位置附近容易發(fā)生破壞。(5)對敏感元件s2進行了受鉆井現(xiàn)場外界振動作用時的諧響應分析,分析結果表明,外界振動引起的敏感元件s2產生的沿z軸方向的位移很小,可近似認為外界振動對懸臂梁式鉆井液密度計的振動性能不產生影響:外界振動引起的懸臂梁式鉆井液密度計的質量流量測量誤差為0.0011%,該值遠小于密度計質量流量的測量精度要求2%;此外,外界振動不影響敏感元件s2的固有頻率,可知外界振動對懸臂梁式鉆井液密度計的質量流量和密度的測量影響很小,振動性能優(yōu)好,能夠適應鉆井現(xiàn)場的振動條件。(6)對懸臂梁式鉆井液密度計進行了溫度場作用下的模態(tài)分析,分析結果表明,鉆井現(xiàn)場的極限溫度引起的懸臂梁式鉆井液密度計的密度測量誤差為0.0075g/cm3,該值滿足密度計密度的測量精度要求0.01g/cm3,可知,鉆井現(xiàn)場的溫度變化引起的密度測量誤差很小,懸臂梁式鉆井液密度計的溫度性能優(yōu)好;(7)對懸臂梁式鉆井液密度計進行了熱-結構耦合分析,分析結果表明,鉆井現(xiàn)場的極限溫度引起的左側懸臂梁和右側懸臂梁上拾振點處對應的節(jié)點產生的沿z軸方向的位移相同,即鉆井現(xiàn)場的溫度條件不會對左側懸臂梁和右側懸臂梁的振動造成位移差,可知,溫度對懸臂梁式鉆井液密度計的質量流量測量影響很小,溫度性能優(yōu)好,能夠適應鉆井現(xiàn)場的溫度條件。(8)對敏感元件s2進行了壓力作用下的模態(tài)分析,分析結果表明,當鉆井液的壓力為設計極限時,極限壓力引起的懸臂梁式鉆井液密度計的密度測量誤差為0.0022g/cm3,該值滿足密度計密度的測量精度要求0.01g/cm3,可知,鉆井液的壓力變化引起的密度測量誤差很小,懸臂梁式鉆井液密度計的壓力性能優(yōu)好。(9)對懸臂梁式鉆井液密度計進行了流-固耦合分析,分析結果表明,當鉆井液的壓力達到設計上限時,敏感元件s2產生的沿各方向位移均極小,極限壓力引起的懸臂梁式鉆井液密度計的質量流量測量誤差為0.0003%,該值遠小于密度計質量流量的測量精度要求2%,可知,懸臂梁式鉆井液密度計的質量流量測量受壓力影響很小,壓力性能優(yōu)良,能夠適應極限工作壓力條件。此外,敏感元件s2產生的最大等效平均應力遠小于所用材料的最大許用應力。(10)綜合考慮密度計本身的系統(tǒng)誤差、外界振動、溫度以及鉆井液壓力引起的密度和質量流量的測量誤差,可知,懸臂梁式鉆井液密度計密度測量的總誤差為0.0097g/cm3,質量流量測量的總誤差為0.0014%,二者均能滿足密度計的測量精度要求,故懸臂梁式鉆井液密度計的振動性能、溫度性能以及壓力性能優(yōu)好,均能夠滿足鉆井現(xiàn)場的工作條件。
[Abstract]:Drilling fluid plays a very important role in the drilling process. Whether the density of drilling fluid can be accurately detected to control the material ratio of each component of drilling fluid is related to whether the drilling fluid can be drilled safely and efficiently. However, all the above-mentioned devices and devices used to detect liquid density have their limitations in use. In addition, due to the harsh environmental factors on the drilling site, the above-mentioned density testing equipment and devices are not available. In order to achieve the requirement of accurate, safe and efficient detection of drilling fluid density, the vibration and temperature conditions on the drilling site should be fully considered in the design of fluid density timing. At the same time, the flow velocity and pressure conditions of drilling fluid should be considered. Finally, a vibrating tubular drilling fluid density measuring system is proposed and established. On this basis, a vibrating tubular liquid densimeter, which is the core component of the testing system, is designed, and a cantilever drilling fluid densimeter is developed. The main work is as follows: (1) Summarize and analyze the research status of fluid density testing equipment and devices at home and abroad, and determine the scheme of choosing vibrating tubular liquid densimeter to realize the detection of drilling fluid density. (2) Considering the function of each module in the vibrating tubular drilling fluid density testing system, it is known that the performances of the drilling fluid density testing system can be characterized by the performances of the vibrating tubular drilling fluid densimeter. Physical and chemical properties of a new type of vibrating tube type liquid densimeter, a cantilever type drilling fluid densimeter with the components of cantilever beam and measuring tube as sensing elements, are presented. At the same time, the design and calculation of the densimeter are completed. (3) The modal analysis of the sensitive element S2 composed of cantilever beam and measuring tube is carried out, and the sensitivity is obtained. The lower limit value of excitation frequency is 1591.0 Hz, the upper limit value is 1691.0 Hz, and the step length is 0.01 Hz. The modal analysis of the shell of the densimeter is carried out. The results show that the shell will not resonate with the sensitive element S2 composed of the cantilever beam and the measuring tube, and the cantilever beam type is verified. (4) The harmonic response analysis of the sensor S2 is carried out. The results show that the equivalent stress and strain of the sensor S2 are mainly concentrated in the vicinity of the excessive phases of the a-end and b-end of the cantilever beam when the cantilever drilling fluid densimeter works. (5) Harmonic response analysis of sensitive element S2 under the action of external vibration in drilling site is carried out. The results show that the displacement along Z axis caused by external vibration of sensitive element S2 is very small, which can be approximated to the density of the cantilever drilling fluid. The measuring error of mass flow rate of the cantilever drilling fluid densimeter caused by external vibration is 0.0011%, which is far less than 2% of the measuring accuracy of the densimeter mass flow rate; moreover, the external vibration does not affect the natural frequency of the sensitive element s 2, so the quality of the cantilever drilling fluid densimeter is known. (6) The modal analysis of the cantilever drilling fluid densimeter under the action of temperature field is carried out. The results show that the density measurement error of the cantilever drilling fluid densimeter caused by the limit temperature of the drilling site is 0.0075g/cm3. This value meets the density measurement accuracy requirement of 0.01g/cm3. It can be seen that the density measurement error caused by the temperature change in the drilling site is very small, and the temperature performance of the cantilever drilling fluid densimeter is excellent. (7) The thermal-structural coupling analysis of the cantilever drilling fluid densimeter is carried out, and the results show that the limit temperature in the drilling site causes the density measurement error. The displacement along the Z axis produced by the node corresponding to the vibration pickup point on the left cantilever beam and the right cantilever beam is the same, that is, the displacement difference between the vibration of the left cantilever beam and the right cantilever beam will not be caused by the temperature condition in the drilling site. It is known that the temperature has little influence on the mass flow measurement of the cantilever drilling fluid densimeter and the temperature performance is good. (8) The modal analysis of the sensitive element S2 under pressure is carried out. The results show that when the drilling fluid pressure is the design limit, the density measurement error of the cantilever drilling fluid densimeter caused by the limit pressure is 0.0022g/cm3, which meets the density measurement accuracy requirement of the densimeter 0.01. G / cm 3, it is known that the density measurement error caused by the pressure change of drilling fluid is very small, and the pressure performance of the cantilever drilling fluid densimeter is excellent. (9) The fluid-solid coupling analysis of the cantilever drilling fluid densimeter is carried out. The results show that when the pressure of drilling fluid reaches the design upper limit, the displacement of the sensitive element S2 is uniform along all directions. The mass flow measurement error of the cantilever drilling fluid densimeter caused by the extreme pressure is 0.0003%, which is far less than 2% of the measurement accuracy of the densimeter mass flow. The maximum equivalent average stress produced by the inductor S2 is far less than the maximum allowable stress of the material used. (10) Considering the systematic error of the densimeter itself, the measurement error of density and mass flow caused by external vibration, temperature and drilling fluid pressure, the total error of density measurement of the cantilever drilling fluid densimeter is 0.0097g/cm3, and the total error of quality measurement is 0.0097g/cm3. The total error of flowrate measurement is 0.0014%. Both of them can satisfy the measuring accuracy requirement of the densimeter. Therefore, the vibration performance, temperature performance and pressure performance of the cantilever drilling fluid densimeter are excellent, which can meet the working conditions of the drilling site.
【學位授予單位】:濟南大學
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:TE254

【相似文獻】

相關期刊論文 前10條

1 ;新型多功能鉆井液的配方設計[J];石油鉆探技術;2003年02期

2 張金波;鄢捷年;;高溫高壓鉆井液密度預測新模型的建立[J];鉆井液與完井液;2006年05期

3 文田;;使用優(yōu)質輕鉆井液鉆井在塔里木試驗成功[J];石油鉆采工藝;2007年03期

4 劉超;;入井鉆井液密度測量技術[J];錄井工程;2007年03期

5 ;低密度無固相鉆井液在馬31井應用取得新突破[J];吐哈油氣;2008年01期

6 宋洵成;王振飛;韋龍貴;何連;;溫度壓力與鉆井液密度相互影響規(guī)律研究[J];內蒙古石油化工;2012年05期

7 郭京華;夏柏如;黃桂洪;侯立中;黃河福;;稠油瀝青污染鉆井液的處理技術[J];鉆采工藝;2012年04期

8 龍政軍;;鉆進中有效環(huán)空鉆井液密度及其計算方法[J];石油鉆采工藝;1989年04期

9 張琰,任麗榮;線性石蠟基鉆井液高溫高壓性能的研究[J];探礦工程(巖土鉆掘工程);2000年05期

10 趙繼軍,冀成樓,惠鐵映,曹勇,王勇;埃及蘇伊士灣地區(qū)埃斯旺油田鉆井液情況簡介[J];鉆井液與完井液;2001年05期

相關會議論文 前3條

1 孫君道;張玲;劉春峰;王西平;;鄂爾多斯盆地南部“三保”鉆井液的應用研究[A];第十四屆全國探礦工程(巖土鉆掘工程)學術研討會論文集[C];2007年

2 姜智博;張興全;李峰飛;;高溫高壓條件下鉆井液密度研究[A];2013年中國海洋工程技術年會論文集[C];2013年

3 柴占文;牟長清;侯召坡;張杰;陳玲;王貴平;;4000m低溫車載鉆機固控系統(tǒng)的研制[A];2011年石油裝備學術研討會論文專輯[C];2011年

相關重要報紙文章 前3條

1 記者 許忠邋通訊員 謝銀娣 溫海霞;低密度無固相鉆井液在吐哈成功應用[N];中國石油報;2008年

2 馬獻珍;大牛地氣田水平井有了好用的鉆井液[N];中國石化報;2009年

3 泰豫;地質錄井:深入地宮的“眼睛”[N];中國石化報;2013年

相關博士學位論文 前1條

1 李大奇;裂縫性地層鉆井液漏失動力學研究[D];西南石油大學;2012年

相關碩士學位論文 前9條

1 王克林;大斜度井段偏心環(huán)空鉆井液紊流攜巖規(guī)律研究[D];東北石油大學;2015年

2 李棟;振動管式鉆井液密度檢測系統(tǒng)的建立及其性能研究[D];濟南大學;2015年

3 寧立偉;鉆井液物性參數(shù)對深水鉆井井筒溫度壓力的影響[D];中國石油大學;2008年

4 殷己森;鉆井液流變模式優(yōu)選及水力參數(shù)優(yōu)化設計研究[D];西南石油大學;2012年

5 白小東;海洋深水鉆井液水合物抑制劑研究[D];西南石油學院;2005年

6 竇玉玲;深水鉆井鉆井液密度窗口及套管層次確定方法研究[D];中國石油大學;2007年

7 姜治;海拉爾地區(qū)安全鉆井液密度窗口研究[D];大慶石油大學;2006年

8 孔德深;鉆井條件下CO_2背景值異常機理研究[D];大慶石油學院;2010年

9 黃蕓;重晶石親油改性及其在鉆井液中的效果評價[D];西南石油大學;2014年

,

本文編號:2176960

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/shiyounenyuanlunwen/2176960.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權申明:資料由用戶44d7d***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com