燃?xì)廨啓C(jī)余鍋及煙氣余熱制冷聯(lián)合系統(tǒng)的優(yōu)化設(shè)計(jì)
[Abstract]:Gas turbines are favored for their small investment, flexibility, reliability and good environmental protection performance, which greatly promote the rapid development of gas turbine combined cycle (Gas Turbine Combined cycle technology. The combined system of flue gas waste heat absorption refrigeration and cooling system of gas turbine waste heat boiler has been widely paid attention to by academic and engineering circles because of its high thermal efficiency due to its ability to recover the waste heat from spent gas of gas turbine to a large extent. In this paper, the fixed thermoelectric cooling demand (44MW 1.0 MPA steam 65t / h 2000kW cooling capacity) of a refinery is taken as the object of this paper. The combined system of lithium bromide absorption refrigeration and cooling system with separated heat pipe of flue gas from waste gas boiler with single pressure and no supplementary combustion of gas turbine is taken as the object of this paper, and the equipment situation is weighed. The optimal design of the combined system was carried out under the conditions of 150 ~ 200 擄C exhaust smoke from the residual boiler, three subsystems of the separated heat pipe flue gas waste heat generator and three subsystems, namely, the compartmentalized gas turbine, the single effect lithium bromide refrigeration unit and the separated heat pipe flue gas waste heat generator. Firstly, the mechanism model of the three subsystems mentioned above is established, and then the number of independent variables of the three subsystems is determined by the analysis of degrees of freedom (respectively 4 / 8 / 9), and the corresponding optimal design variables are selected according to the engineering constraints and design convenience. Then the objective function is defined as annual total operating cost (TAC),) thermal coefficient per unit area (A/COP) and generator total heat transfer coefficient (UH),). Then the MATLAB genetic algorithm program of three subsystems is developed to optimize the solution. Under the corresponding optimal design condition, the minimum TAC of the first subsystem is 1283 脳 10 4 / y, the optimal A/COP of the second subsystem is 729.32 (corresponding to A/COP 0.7252 An 528.9 m2), and the optimal 2=32.0W/ (m C) HU 脳 擄of the third subsystem is obtained by genetic algorithm optimization.
【學(xué)位授予單位】:華南理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類(lèi)號(hào)】:TE96
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 岳偉挺,李素芬;聯(lián)合循環(huán)余熱鍋爐蒸汽參數(shù)的優(yōu)化分析[J];動(dòng)力工程;2002年06期
2 鄧世敏,危師讓,林萬(wàn)超;聯(lián)合循環(huán)蒸汽系統(tǒng)參數(shù)分析研究[J];動(dòng)力工程;1998年04期
3 胡圣武;;基于Matlab的空間分析[J];地理空間信息;2012年02期
4 劉忠樓,楊震,馬國(guó)棟,張建龍;配PG9171E燃機(jī)余熱鍋爐主蒸汽參數(shù)的優(yōu)化計(jì)算[J];鍋爐技術(shù);2002年09期
5 莊德文;張航;;基于MATLAB大學(xué)物理多媒體課件制作[J];中國(guó)科教創(chuàng)新導(dǎo)刊;2012年02期
6 溫立,李正陽(yáng),王麗莉;燃?xì)狻羝?lián)合循環(huán)余熱鍋爐參數(shù)優(yōu)化[J];哈爾濱理工大學(xué)學(xué)報(bào);2003年03期
7 戚濤;張志勇;;天然氣發(fā)電機(jī)煙氣余熱利用技術(shù)在油氣田場(chǎng)站的應(yīng)用[J];節(jié)能;2006年10期
8 楊振民,唐夕山,金蘇敏;熱管廢熱發(fā)生器煙氣流場(chǎng)的數(shù)值模擬[J];南京工業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版);2005年03期
9 焦樹(shù)建;論余熱鍋爐型聯(lián)合循環(huán)中雙壓再熱式余熱鍋爐的特性與汽輪機(jī)特性的優(yōu)化匹配問(wèn)題[J];燃?xì)廨啓C(jī)技術(shù);2001年02期
10 孫濤;趙天燕;;我國(guó)能源消耗碳排放量測(cè)度及其趨勢(shì)研究[J];審計(jì)與經(jīng)濟(jì)研究;2014年02期
相關(guān)碩士學(xué)位論文 前8條
1 陶玉靈;煙氣驅(qū)動(dòng)的熱管廢熱溴化鋰制冷機(jī)的計(jì)算機(jī)模擬[D];南京工業(yè)大學(xué);2003年
2 魯金輝;70kt/a已內(nèi)酰胺環(huán)已酮肟化過(guò)程的計(jì)算機(jī)模擬[D];湖南大學(xué);2004年
3 楊振民;熱管廢熱溴化鋰制冷機(jī)組的優(yōu)化設(shè)計(jì)研究[D];南京工業(yè)大學(xué);2005年
4 朱慶生;基于IIS和ASP技術(shù)的PBL智能型助學(xué)網(wǎng)站的研究[D];合肥工業(yè)大學(xué);2006年
5 王銀年;遺傳算法的研究與應(yīng)用[D];江南大學(xué);2009年
6 姬北英;多點(diǎn)移動(dòng)無(wú)線光通信方案與仿真研究[D];煙臺(tái)大學(xué);2009年
7 焦華;第二類(lèi)吸收式熱泵在煉廠余熱領(lǐng)域的應(yīng)用[D];大連理工大學(xué);2012年
8 姚振宇;加熱爐前置燃?xì)廨啓C(jī)方案研究[D];華南理工大學(xué);2014年
,本文編號(hào):2172622
本文鏈接:http://sikaile.net/kejilunwen/shiyounenyuanlunwen/2172622.html