燃氣輪機余鍋及煙氣余熱制冷聯(lián)合系統(tǒng)的優(yōu)化設計
[Abstract]:Gas turbines are favored for their small investment, flexibility, reliability and good environmental protection performance, which greatly promote the rapid development of gas turbine combined cycle (Gas Turbine Combined cycle technology. The combined system of flue gas waste heat absorption refrigeration and cooling system of gas turbine waste heat boiler has been widely paid attention to by academic and engineering circles because of its high thermal efficiency due to its ability to recover the waste heat from spent gas of gas turbine to a large extent. In this paper, the fixed thermoelectric cooling demand (44MW 1.0 MPA steam 65t / h 2000kW cooling capacity) of a refinery is taken as the object of this paper. The combined system of lithium bromide absorption refrigeration and cooling system with separated heat pipe of flue gas from waste gas boiler with single pressure and no supplementary combustion of gas turbine is taken as the object of this paper, and the equipment situation is weighed. The optimal design of the combined system was carried out under the conditions of 150 ~ 200 擄C exhaust smoke from the residual boiler, three subsystems of the separated heat pipe flue gas waste heat generator and three subsystems, namely, the compartmentalized gas turbine, the single effect lithium bromide refrigeration unit and the separated heat pipe flue gas waste heat generator. Firstly, the mechanism model of the three subsystems mentioned above is established, and then the number of independent variables of the three subsystems is determined by the analysis of degrees of freedom (respectively 4 / 8 / 9), and the corresponding optimal design variables are selected according to the engineering constraints and design convenience. Then the objective function is defined as annual total operating cost (TAC),) thermal coefficient per unit area (A/COP) and generator total heat transfer coefficient (UH),). Then the MATLAB genetic algorithm program of three subsystems is developed to optimize the solution. Under the corresponding optimal design condition, the minimum TAC of the first subsystem is 1283 脳 10 4 / y, the optimal A/COP of the second subsystem is 729.32 (corresponding to A/COP 0.7252 An 528.9 m2), and the optimal 2=32.0W/ (m C) HU 脳 擄of the third subsystem is obtained by genetic algorithm optimization.
【學位授予單位】:華南理工大學
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:TE96
【參考文獻】
相關期刊論文 前10條
1 岳偉挺,李素芬;聯(lián)合循環(huán)余熱鍋爐蒸汽參數(shù)的優(yōu)化分析[J];動力工程;2002年06期
2 鄧世敏,危師讓,林萬超;聯(lián)合循環(huán)蒸汽系統(tǒng)參數(shù)分析研究[J];動力工程;1998年04期
3 胡圣武;;基于Matlab的空間分析[J];地理空間信息;2012年02期
4 劉忠樓,楊震,馬國棟,張建龍;配PG9171E燃機余熱鍋爐主蒸汽參數(shù)的優(yōu)化計算[J];鍋爐技術;2002年09期
5 莊德文;張航;;基于MATLAB大學物理多媒體課件制作[J];中國科教創(chuàng)新導刊;2012年02期
6 溫立,李正陽,王麗莉;燃氣—蒸汽聯(lián)合循環(huán)余熱鍋爐參數(shù)優(yōu)化[J];哈爾濱理工大學學報;2003年03期
7 戚濤;張志勇;;天然氣發(fā)電機煙氣余熱利用技術在油氣田場站的應用[J];節(jié)能;2006年10期
8 楊振民,唐夕山,金蘇敏;熱管廢熱發(fā)生器煙氣流場的數(shù)值模擬[J];南京工業(yè)大學學報(自然科學版);2005年03期
9 焦樹建;論余熱鍋爐型聯(lián)合循環(huán)中雙壓再熱式余熱鍋爐的特性與汽輪機特性的優(yōu)化匹配問題[J];燃氣輪機技術;2001年02期
10 孫濤;趙天燕;;我國能源消耗碳排放量測度及其趨勢研究[J];審計與經(jīng)濟研究;2014年02期
相關碩士學位論文 前8條
1 陶玉靈;煙氣驅動的熱管廢熱溴化鋰制冷機的計算機模擬[D];南京工業(yè)大學;2003年
2 魯金輝;70kt/a已內(nèi)酰胺環(huán)已酮肟化過程的計算機模擬[D];湖南大學;2004年
3 楊振民;熱管廢熱溴化鋰制冷機組的優(yōu)化設計研究[D];南京工業(yè)大學;2005年
4 朱慶生;基于IIS和ASP技術的PBL智能型助學網(wǎng)站的研究[D];合肥工業(yè)大學;2006年
5 王銀年;遺傳算法的研究與應用[D];江南大學;2009年
6 姬北英;多點移動無線光通信方案與仿真研究[D];煙臺大學;2009年
7 焦華;第二類吸收式熱泵在煉廠余熱領域的應用[D];大連理工大學;2012年
8 姚振宇;加熱爐前置燃氣輪機方案研究[D];華南理工大學;2014年
,本文編號:2172622
本文鏈接:http://sikaile.net/kejilunwen/shiyounenyuanlunwen/2172622.html