提升管反應器數(shù)值模擬與熱力學分析
本文選題:催化裂化 + 提升管反應器 ; 參考:《中國石油大學(華東)》2015年碩士論文
【摘要】:提升管反應器是煉油催化裂化裝置中最為重要的組成部分。對提升管內化學反應過程進行深入研究具有重要意義,尤其是對反應過程進行定量的熱力學分析將彌補現(xiàn)有研究的不足。本文利用計算流體力學方法(CFD),首先建立了提升管反應器的歐拉雙流體流動-反應耦合模型用以模擬提升管內的流動、反應和傳熱情況。之后利用熵平衡關系,建立了提升管反應器內化學反應過程的熱力學分析方法,并將熱力學分析方法與流動-反應耦合模型相結合,對提升管內不可逆的催化反應過程進行熱力學定量描述。首先利用計算流體力學方法對一新型結構提升管反應器進行數(shù)值模擬,并通過對比計算數(shù)據(jù)與設計數(shù)據(jù)驗證所建流動-反應模型的準確性。通過數(shù)值計算,詳細考察了該提升管內部兩相速度分布、催化劑濃度分布、兩相溫度分布及反應過程。對該新型結構提升管的計算表明,提升管進料段噴嘴處油氣高速射流會對管內流動狀態(tài)、氣固接觸效率以及傳熱和反應情況造成顯著影響。提升管徑向上存在速度、顆粒濃度以及溫度梯度,隨著流動、反應的充分發(fā)展,這一不均勻性將沿著提升管高度逐漸減弱。徑向梯度的出現(xiàn)也反映出進料噴嘴角度對流場的影響,徑向湍動效果、動量傳遞的強烈程度都將進一步對反應深度和傳熱造成影響。為進一步驗證提升管雙流體假設的合理性,建立了考慮汽化過程的提升管氣-液-固三相模型以考察液霧顆粒在管內的存在及變化情況。結果表明,液霧顆粒僅存在于噴嘴上方3~4m高度處,之后便快速汽化為氣相,有效證明了提升管內兩相模擬的合理性。在利用熵平衡關系建立提升管內催化反應過程熱力學分析方法的過程中,根據(jù)現(xiàn)有實驗數(shù)據(jù)和文獻報道,首先對集總動力學模型中各集總的熱力學性質進行了標定計算,之后提出了不可逆催化反應過程所造成的熵產(chǎn)生的計算方法。通過程序語言C編寫了用戶自定義函數(shù)并將其嵌入前述提升管流動-反應耦合模型中進行數(shù)值計算,對實驗室小型等徑提升管和一變徑提升管進行了熱力學分析與對比。結果表明,變徑段由于其大劑油比、適宜的停留時間,使得快速反應段反應程度加深、過程不可逆性增大,從而造成全管內反應過程的熵產(chǎn)生和有效能損失的相應增大。
[Abstract]:Riser reactor is the most important component of FCC unit. It is of great significance to study the chemical reaction process in the riser, especially the quantitative thermodynamic analysis of the reaction process will make up for the shortcomings of the existing research. Based on the computational fluid dynamics (CFD) method, an Eulerian two-fluid flow-reaction coupling model is established to simulate the flow, reaction and heat transfer in a riser reactor. Then, the thermodynamic analysis method of chemical reaction process in riser reactor is established by using entropy equilibrium relationship, and the coupling model of flow-reaction is combined with the thermodynamic analysis method. The irreversible catalytic reaction process in the riser is described quantitatively by thermodynamics. A new type of riser reactor was numerically simulated by computational fluid dynamics (CFD), and the accuracy of the fluid-reaction model was verified by comparing the calculated data with the design data. The two-phase velocity distribution, catalyst concentration distribution, two-phase temperature distribution and reaction process in the riser were investigated numerically. The calculation of the new type of riser shows that the high velocity jet of oil and gas at the nozzle of the feed section of the riser will have a significant effect on the flow state, gas-solid contact efficiency, heat transfer and reaction in the pipe. There are velocity, particle concentration and temperature gradient in the riser. With the development of the flow and reaction, the inhomogeneity will gradually decrease along the riser height. The appearance of radial gradient also reflects the influence of inlet nozzle angle on the flow field. The effect of radial turbulence and the intensity of momentum transfer will further affect the reaction depth and heat transfer. In order to further verify the rationality of two-fluid hypothesis in riser, a gas-liquid-solid three-phase model of riser considering vaporization process was established to investigate the existence and variation of liquid-fog particles in the pipe. The results show that the liquid mist particles only exist at the height of 3m above the nozzle, and then vaporize rapidly to gas phase, which effectively proves the rationality of two-phase simulation in the riser. In the process of establishing thermodynamic analysis method of catalytic reaction process in riser by using entropy equilibrium relationship, the thermodynamic properties of each set in lumped kinetic model are calibrated and calculated according to the available experimental data and literature reports. After that, the calculation method of entropy production caused by irreversible catalytic reaction is proposed. The user-defined function is programmed by programming language C and embedded in the fluid-reaction coupling model of the riser mentioned above. The thermodynamic analysis and comparison of the laboratory small equal-diameter riser and a variable-diameter riser are carried out. The results show that the reaction degree of the rapid reaction section is deepened and the process irreversibility is increased due to its large ratio of solvent to oil and the appropriate residence time, which results in the entropy generation and the loss of effectiveness of the whole reaction process increasing accordingly.
【學位授予單位】:中國石油大學(華東)
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:TE96
【參考文獻】
相關期刊論文 前10條
1 顏如焱;華賁;張正雷;;催化裂化再生煙氣能量回收系統(tǒng)現(xiàn)狀分析與設想[J];廣東化工;2012年13期
2 李洪鐘;郭慕孫;;回眸與展望流態(tài)化科學與技術[J];化工學報;2013年01期
3 李春義;袁起民;陳小博;楊朝合;山紅紅;張建芳;;兩段提升管催化裂解多產(chǎn)丙烯研究[J];中國石油大學學報(自然科學版);2007年01期
4 楊朝合;山紅紅;張建芳;馬安;;傳統(tǒng)催化裂化提升管反應器的弊端與兩段提升管催化裂化[J];中國石油大學學報(自然科學版);2007年01期
5 張龍;陳保東;;催化裂化再生器能量和火用分析[J];節(jié)能技術;2006年03期
6 楊朝合,山紅紅,張建芳;兩段提升管催化裂化系列技術[J];煉油技術與工程;2005年03期
7 呂亮功,肖家治,王英敏;催化裂化裝置的用能分析與改進[J];石油大學學報(自然科學版);2004年05期
8 章虎,陳關喜,馮建躍;93號汽油樣品組分的GC-MS分析[J];分析測試學報;2003年05期
9 張建芳,山紅紅,李正,鈕根林,孫昱東;兩段提升管催化裂化新技術的開發(fā)Ⅰ.兩段串聯(lián)提升管反應器[J];石油學報(石油加工);2000年05期
10 吳文偉,張涌,凌之光;我國催化裂化能量回收機組的發(fā)展[J];煉油設計;1999年01期
相關碩士學位論文 前4條
1 曹國慶;常壓渣油催化裂解多產(chǎn)丙烯乙烯(MPE)工藝研究[D];中國石油大學;2010年
2 郭菊花;重油兩段催化裂解多產(chǎn)丙烯集總動力學模型的初步研究[D];中國石油大學;2008年
3 張歡;多產(chǎn)低碳烯烴變徑提升管數(shù)值模擬研究[D];中國石油大學;2008年
4 孫偉;催化裂化反應器中氣固兩相流動的冷模實驗研究[D];中國石油大學;2007年
,本文編號:2095960
本文鏈接:http://sikaile.net/kejilunwen/shiyounenyuanlunwen/2095960.html