油氣管道環(huán)向表面裂紋玻璃纖維增強復合材料修復補強研究
本文選題:油氣管道 + 環(huán)向表面裂紋 ; 參考:《西南交通大學》2017年碩士論文
【摘要】:管道是現(xiàn)代能源輸送工程中的重要結(jié)構(gòu)形式之一,油氣管道更已成為當今國民經(jīng)濟發(fā)展的能源命脈。而在鋪設(shè)或服役過程中,往往由于施工或服役條件惡劣,管道中將不可避免地存在各類缺陷。這些缺陷若不及時修復,輕則導致輸送介質(zhì)泄漏,嚴重時甚至導致爆管事故發(fā)生,對生態(tài)環(huán)境、人身安全和經(jīng)濟發(fā)展構(gòu)成重大威脅。環(huán)向表面裂紋及可以當量化為等效環(huán)向表面裂紋的缺陷作為一類重要缺陷的代表,其修復技術(shù)一直受到普遍關(guān)注。玻璃纖維增強復合材料(Glass Fiber Reinforced Polymers,簡稱GFRP)修復技術(shù)作為一種新型的管道修復技術(shù),因具有許多傳統(tǒng)修復加固技術(shù)無法比擬的優(yōu)點,在近年來得到了廣泛的應用,但主要集中在對含體積損失缺陷的管道的修復方面。目前對GFRP修復技術(shù)在含環(huán)向表面裂紋缺陷管道的修復中的作用與效果認識尚不十分清晰,具有較大的研究空間。據(jù)此,本課題以GFRP修復含環(huán)向表面裂紋缺陷的油氣管道為研究對象,采用試驗測試與有限元模擬相結(jié)合的研究方法,對GFRP修復前后,管道在組合載荷作用下的狀態(tài)進行了對比分析,并對GFRP修復層參數(shù)對修復效果的影響進行了較為細致的討論,主要內(nèi)容如下:首先,進行了高強玻璃纖維方格布/環(huán)氧樹脂增強復合材料的性能測試試驗,為GFRP管道修復試驗與數(shù)值模擬提供了數(shù)據(jù)基礎(chǔ)。在靜水壓和彎矩組合載荷作用下,進行了有/無GFRP修復的含環(huán)向表面裂紋缺陷管道的破壞試驗,并分析了 GFRP對含環(huán)向表面裂紋缺陷管道的修復作用與效果。結(jié)果表明:當載荷條件不足以使管體發(fā)生屈服時,GFRP修復技術(shù)對管體的修復效果有限;而當載荷條件足以使管體發(fā)生屈服后,GFRP能夠顯著抑制所包覆管體屈服;對含環(huán)向表面裂紋管道而言,明顯提升了管道失效載荷。其次,基于試驗管道尺寸參數(shù),建立了有限元仿真模型。結(jié)合Newman-Raju理論公式,對有限元模擬結(jié)果準確性進行了校驗。證明了采用數(shù)值模擬方法進行擴展試驗的可行性與準確性。再次,采用有限元方法,對含深度相同,長度不同和長度相同,深度不同的兩組表面裂紋的未修復管道模型進行了數(shù)值模擬。討論了裂紋尺寸不同時,裂紋前緣最深點J積分隨外載荷的變化規(guī)律,結(jié)果表明J積分隨外載荷變化規(guī)律與半橢圓形表面裂紋尺寸無關(guān)。并進一步對裂紋前緣最深點J積分與裂紋側(cè)面中部管材軸向應變的絕對值關(guān)系進行了探討,初步闡明了與裂紋深度和長度無關(guān),二者隨外載荷的變化規(guī)律具有一定的相關(guān)性。最后,結(jié)合測試試驗結(jié)果,驗證了 GFRP修復含環(huán)向表面裂紋缺陷管道有限元模擬方法的可行性與準確性。結(jié)合未修復管道模型的分析結(jié)果,給出了 GFRP修復技術(shù)對環(huán)向表面裂紋的修復效果隨GFRP包覆層寬度、厚度及GFRP包覆層與管鋼粘結(jié)膠層模量的變化規(guī)律。最終,為GFRP修復含環(huán)向表面裂紋缺陷管道時參數(shù)選取問題提出了一些合理化建議。
[Abstract]:Pipeline is one of the important structural forms in modern energy transmission projects, and oil and gas pipelines have become the lifeblood of the development of national economy. However, in the course of laying or service, various kinds of defects will inevitably exist in the pipeline due to the bad construction or service conditions. If these defects are not repaired in time, light will lead to leakage of transport medium, and even lead to pipe burst accidents, which pose a great threat to ecological environment, personal safety and economic development. As the representative of a class of important defects, the repair technology of toroidal surface cracks and defects which can be quantified as equivalent toroidal surface cracks have been paid more and more attention. Glass Fiber reinforced Polymer (GFRP) repair technology, as a new type of pipeline repair technology, has been widely used in recent years because of its many advantages that can not be compared with the traditional repair and reinforcement technology. However, the main focus is on the repair of pipelines containing volume loss defects. At present, the function and effect of GFRP repair technology in the repair of pipeline with annular surface cracks are not clear, and there is a large research space. Therefore, this paper takes GFRP repair of oil and gas pipeline with circumferential surface crack as the research object, and adopts the research method of combining test and finite element simulation to study before and after GFRP repair. The state of pipeline under combined load is compared and analyzed, and the influence of GFRP repair layer parameters on repair effect is discussed in detail. The main contents are as follows: first, The performance test of high strength glass fiber lattice cloth / epoxy resin reinforced composite was carried out, which provided the data basis for GFRP pipeline repair test and numerical simulation. Under the combined load of hydrostatic pressure and bending moment, the failure test of the pipeline with and without GFRP repair was carried out, and the effect and effect of GFRP on the repair of the pipeline with ring surface crack were analyzed. The results show that the effect of GFRP repair is limited when the load condition is not enough to yield the tube, but when the load condition is sufficient to make the tube yield, the GFRP can significantly inhibit the yield of the coated tube. For a pipe with a circumferential surface crack, the failure load of the pipe is obviously increased. Secondly, the finite element simulation model is established based on the size parameters of the test pipe. Combined with Newman-Raju formula, the accuracy of finite element simulation results is verified. The feasibility and accuracy of the extended test using numerical simulation method are proved. Thirdly, two groups of unrepaired pipe models with the same depth, different length, same length and different depth are numerically simulated by finite element method. The variation law of J-integral with external load at the deepest point of crack front is discussed. The results show that the variation of J-integral with external load is independent of the crack size of semi-elliptical surface. Furthermore, the relationship between the J-integral of the deepest point of the front edge of the crack and the axial strain of the tube in the middle of the crack profile is discussed. It is preliminarily clarified that there is no relationship between the crack depth and the length of the crack, and that there is a certain correlation between them with the variation of the external load. Finally, the feasibility and accuracy of the finite element simulation method for GFRP repair of pipes with circumferential surface cracks are verified by combining the test results. Based on the analysis results of the unrepaired pipe model, the effect of GFRP repair technology on the ring surface crack is given. The variation of GFRP coating width, thickness and the modulus of GFRP cladding layer to pipe steel bond layer are given. Finally, some reasonable suggestions are put forward for the parameter selection of GFRP repairing pipeline with circumferential surface crack.
【學位授予單位】:西南交通大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TE973;TQ327.1
【參考文獻】
相關(guān)期刊論文 前10條
1 鄒海翔;馬廷霞;謝娜娜;徐立;劉維洋;呂亞峰;;芳綸纖維復合材料修補缺陷管道的仿真分析[J];油氣儲運;2016年11期
2 李榮光;杜娟;趙國星;張巍;劉軍;安迪;張軒;;油氣長輸管道管體缺陷及修復技術(shù)概述[J];石油工程建設(shè);2016年01期
3 張萬里;奚運濤;;碳纖維復合材料補強修復效果的在線評價方法[J];機械強度;2013年06期
4 孔海娟;張蕊;周建軍;馬禹;滕翠青;余木火;;芳綸纖維的研究現(xiàn)狀與進展[J];中國材料進展;2013年11期
5 柳軍;嚴波;盧岳川;孫英學;姜乃斌;常學平;;碳纖維復合材料纏繞修復的壓力管道斷裂分析[J];核動力工程;2011年02期
6 劉悅;孟賀學;;油氣管道裂紋評價方法[J];油氣儲運;2010年09期
7 李榮光;;管道缺陷碳纖維修復技術(shù)樹脂體系的改進試驗[J];油氣儲運;2009年08期
8 李影;李國義;馬文鑫;;我國油氣管道建設(shè)現(xiàn)狀及發(fā)展趨勢[J];中國西部科技;2009年14期
9 付明福;梁宏;劉國;劉書梅;;碳纖維復合材料修補缺陷管道的應用實踐[J];油氣儲運;2009年02期
10 王巨洪;范立志;孫海燕中國石油天然氣管道局大連輸油氣公司;王力;石嘉琳;周興濤;;ClockSpring材料在管道缺陷修復中的應用[J];油氣儲運;2007年05期
,本文編號:2068239
本文鏈接:http://sikaile.net/kejilunwen/shiyounenyuanlunwen/2068239.html