高頻電聚結(jié)式油氣水三相流分離器的仿真研究
本文選題:高頻 + FLUENT�。� 參考:《中國石油大學(xué)(華東)》2015年碩士論文
【摘要】:目前,隨著油田的不斷深入開采,一些油田已經(jīng)進(jìn)入“三次采油”時期。受“三次采油”的影響,原油采出液的含水率不斷升高,乳化液中破乳劑、高聚合物的含量也不斷提高,使得原油脫水處理的難度不斷加大。油田上現(xiàn)有的三相分離器已經(jīng)無法有效的解決原油高含水問題,常規(guī)電脫水器極易發(fā)生“倒電場”現(xiàn)象、運(yùn)行不穩(wěn)定,急需新的脫水技術(shù)。因此,研制一種適用范圍廣、脫水效果好、運(yùn)行穩(wěn)定性高的分離器具有十分重要的意義。為了解決油田上遇到的脫水難題,本文設(shè)計了一種高頻電聚結(jié)式油氣水三相流分離器。該分離器將傳統(tǒng)的三相分離器和電脫水器相結(jié)合,采用高頻矩形波脫水電源,屬于一種“三合一”式三相流分離器,能夠同時進(jìn)行旋流分離、重力沉降分離、電脫分離。為了分析分離器的分離效果,優(yōu)化罐體結(jié)構(gòu),本文采用FLUENT軟件分別對分離筒、罐體及聚結(jié)填料的內(nèi)部流場進(jìn)行了模擬仿真。分離筒的模擬結(jié)果表明,原油采出液在分離筒內(nèi)形成旋流分離,且98%的氣相被分離出來;隨著處理量的增加,流體更容易產(chǎn)生旋流運(yùn)動,但分離效果變差,當(dāng)處理量低于設(shè)計值的0.8倍時,原油在分離筒內(nèi)無法形成旋流分離。罐體的模擬結(jié)果表明,含水95%的原油在罐體內(nèi)產(chǎn)生分離,分離后原油含水率低于10%;采用圓弧堰板時可以消除堰板直角接頭處產(chǎn)生的囤油現(xiàn)象。聚結(jié)填料的模擬結(jié)果表明,不同結(jié)構(gòu)參數(shù)的聚結(jié)填料對罐體內(nèi)部流場的影響不同,其中折角為30°、形狀為三角形的聚結(jié)填料內(nèi)部流場較其它結(jié)構(gòu)參數(shù)的聚結(jié)填料理想。在論文的最后,采用自行設(shè)計搭建的電脫水實驗裝置,結(jié)合實際生產(chǎn)分別進(jìn)行了靜態(tài)和動態(tài)電脫實驗。實驗研究結(jié)果表明,脫水的最佳溫度應(yīng)不小于原油粘溫曲線的拐點溫度,且溫度對脫水效果的影響比脫水時間明顯。
[Abstract]:At present, with the further development of oil fields, some oilfields have entered the stage of "tertiary oil recovery". Under the influence of "tertiary oil recovery", the water cut of crude oil produced liquid is increasing, the demulsifier in emulsion and the content of high polymer are also increasing, which makes the dehydration of crude oil more difficult. The existing three-phase separator in oil field can not effectively solve the problem of high water cut of crude oil. The phenomenon of "inverted electric field" is easy to occur in conventional electric dehydrator, and the operation is unstable, so new dehydration technology is urgently needed. Therefore, it is of great significance to develop a separator with wide application range, good dehydration effect and high operation stability. In order to solve the problem of dehydration in oil field, a high frequency electric coalescence three phase flow separator for oil, gas and water is designed in this paper. The separator combines the traditional three-phase separator with the electric dehydrator, and adopts the high-frequency rectangular wave dehydration power supply. It belongs to a "three-in-one" three-phase flow separator, which can separate the swirling flow, the gravity settlement separation, and the electric de-separation simultaneously. In order to analyze the separation effect of the separator and optimize the structure of the tank, the internal flow field of the separator, tank and agglomeration filler was simulated by FLUENT software. The simulation results of the separation tube show that the liquid produced from crude oil forms a swirl separation in the cylinder, and 98% of the gas phase is separated out. With the increase of the treatment amount, the fluid is more likely to produce swirl motion, but the separation effect becomes worse. When the processing capacity is less than 0.8 times of the designed value, the swirl separation of crude oil can not be formed in the separation cylinder. The simulation results show that 95% of the crude oil with water is separated in the tank, and the moisture content of the crude oil is lower than 10% after separation, and the phenomenon of oil hoarding at the right joint of the Weir plate can be eliminated when the arc Weir plate is used. The simulation results show that the effect of different structure parameters on the flow field is different, in which the angle of folding is 30 擄and the shape of triangle is better than that of other structural parameters. At the end of the thesis, the static and dynamic electrical dewatering experiments were carried out by using the electric dehydration experimental device designed by ourselves and combined with the actual production. The experimental results show that the optimum temperature of dehydration should not be less than the inflection point of the viscosity temperature curve of crude oil, and the effect of temperature on the dehydration effect is more obvious than that on dehydration time.
【學(xué)位授予單位】:中國石油大學(xué)(華東)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TE937
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 �?“�;王建軍;曾雄飛;;一種新型的實驗室用老化油電脫水裝置[J];機(jī)電產(chǎn)品開發(fā)與創(chuàng)新;2013年06期
2 王力群;倪玲英;鄭亞文;張洋洋;;波紋板內(nèi)流場模擬計算分析[J];化工機(jī)械;2013年02期
3 王建軍;王兆坤;;變頻脈沖電脫電源應(yīng)用于老化原油脫水實驗[J];機(jī)電產(chǎn)品開發(fā)與創(chuàng)新;2012年04期
4 關(guān)克明;金昱俊;毛志高;崔建軍;康文翠;李瑛;陳康林;;三相分離器技術(shù)的應(yīng)用及效益評價[J];石油化工應(yīng)用;2010年06期
5 樊偉平;滕立志;李玉平;;采油新技術(shù)的研究應(yīng)用[J];內(nèi)蒙古石油化工;2010年01期
6 肖蘊(yùn);趙軍凱;許濤;劉樹文;王宏智;;原油電脫水器技術(shù)進(jìn)展[J];石油化工設(shè)備;2009年06期
7 劉東杰;;勝利油田原油脫水現(xiàn)狀探討[J];勝利油田職工大學(xué)學(xué)報;2009年05期
8 王學(xué)彬;;含油廢水及其處理技術(shù)的研究進(jìn)展[J];化工時刊;2008年11期
9 胡曉林;劉紅兵;;幾種油水分離技術(shù)介紹[J];熱力發(fā)電;2008年03期
10 牛國新;王育欣;姜國強(qiáng);;油水分離控制系統(tǒng)設(shè)計與應(yīng)用[J];裝備制造技術(shù);2008年03期
相關(guān)會議論文 前1條
1 劉亞莉;吳山東;戚俊清;;聚結(jié)材料對油品脫水的影響[A];2006年石油和化工行業(yè)節(jié)能技術(shù)研討會會議論文集[C];2006年
相關(guān)碩士學(xué)位論文 前10條
1 劉士雷;三相分離器設(shè)計及流場研究[D];吉林大學(xué);2012年
2 周杰聯(lián);徑向噴射規(guī)整旋流分離器的實驗研究[D];華中科技大學(xué);2012年
3 王超;臥式油氣水三相分離器的流場研究[D];吉林大學(xué);2011年
4 劉倩倩;基于PLC的矩形波交流原油脫水電源的研究[D];中國石油大學(xué);2010年
5 周彬;油田原油電脫水自動化改造方案設(shè)計[D];中國石油大學(xué);2009年
6 黃欣;矩形波交流原油脫水電源的研究[D];中國石油大學(xué);2007年
7 豐大成;高效分離器油氣水分離研究[D];中國石油大學(xué);2007年
8 司先鋒;在役聯(lián)合站集輸系統(tǒng)主體設(shè)備節(jié)能降耗改進(jìn)方法研究[D];西南石油大學(xué);2006年
9 馬健偉;電脫水器垮電場原因分析及解決措施[D];大慶石油學(xué)院;2005年
10 王敏;一種波紋板聚結(jié)油水分離器的研制[D];華中科技大學(xué);2004年
,本文編號:1972082
本文鏈接:http://sikaile.net/kejilunwen/shiyounenyuanlunwen/1972082.html