改性黃原膠和羥丙基交聯(lián)胍膠過程流變和減阻性能研究
本文選題:改性黃原膠 + 羥丙基胍膠交聯(lián)過程 ; 參考:《華東理工大學(xué)》2015年碩士論文
【摘要】:本文在堿性條件下對(duì)黃原膠(XG)進(jìn)行改性獲得了兩種改性的黃原膠:羥丙基黃原膠(HXG)和陽離子黃原膠(CXG)�?疾旄男渣S原膠過程的影響因素,得到合適的反應(yīng)條件。對(duì)改性產(chǎn)品進(jìn)行波譜學(xué)表征,研究了改性前后黃原膠溶液的流變和微流變性能的差異、攜砂性能和減阻性能。還考察了低濃度羥丙基胍膠交聯(lián)過程的微流變和流變指標(biāo)變化,建立了羥丙基胍膠交聯(lián)過程的微流變動(dòng)力學(xué)模型。為進(jìn)一步研究靜態(tài)攜砂機(jī)理,采用微流變儀研究了改性黃原膠和交聯(lián)羥丙基胍膠的攜砂微流變性能。使用低溫場(chǎng)發(fā)射電子掃描顯微鏡(Cyro-FESEM)對(duì)改性前后黃原膠溶液以及羥丙基胍膠溶液交聯(lián)前后的微觀結(jié)構(gòu)進(jìn)行研究。獲得以下主要結(jié)論:1)黃原膠分別與1,2-環(huán)氧丙烷和3-氯-2-羥丙基三甲基氯化銨進(jìn)行醚化反應(yīng)可以獲得兩種改性產(chǎn)品,羥丙基黃原膠和陽離子黃原膠,兩種改性的黃原膠黏度都明顯增大,得到合適的醚化反應(yīng)條件。紅外、XRD、元素分析和1H-NMR表明了經(jīng)過醚化反應(yīng)得到了預(yù)期的產(chǎn)物HXG和CXG。2)黃原膠及其衍生物溶液均表現(xiàn)變現(xiàn)出剪切變稀的流變特性,可以使用非線性共轉(zhuǎn)Jeffreys模型模擬流動(dòng)曲線;HXG具有更高的黏度、黏彈性和觸變性,耐鹽性耐酸堿性能穩(wěn)定,更好的耐溫性能和攜砂性能。陽離子改性的CXG也具有更高的黏彈性、良好的觸變性,但其耐鹽性和耐酸堿性能有所下降。3)考察羥丙基胍膠微流變交聯(lián)過程中宏觀黏度因子MVI值(Macroscopic Viscosity Index,簡(jiǎn)稱MVI)隨交聯(lián)劑和pH調(diào)節(jié)劑的變化,得到合適的交聯(lián)劑和pH調(diào)節(jié)劑用量;MVI隨著溫度升高而降低,不同溫度下,羥丙基胍膠交聯(lián)過程可以使用微流變反應(yīng)動(dòng)力學(xué)一級(jí)模型來擬合。4)獲得了剪切流場(chǎng)中低濃度羥丙基胍膠的交聯(lián)過程黏度隨時(shí)間的變化,明確了剪切速率和溫度對(duì)低濃度羥丙基胍膠交聯(lián)過程的影響。5)HXG和XG溶液在光滑管和粗糙管中都具有減阻效果,對(duì)于1g/L的HXG和XG體系,在光滑管中的最大減阻率分別達(dá)到72.8%和68.1%,減阻率隨著濃度的增大而增大�?倽舛葹�1 g/L,黃原膠與羥丙基胍膠、黃原膠和疏水兩性纖維素衍生物FAG-500、 FAG-500與羥丙基胍膠復(fù)配時(shí)表現(xiàn)出協(xié)同減阻效應(yīng),黃原膠與長(zhǎng)碳鏈烷基酰胺氧化胺(LQ-FJ)復(fù)配時(shí)減阻率降低。6) Cyro-FESEM圖顯示,黃原膠及其衍生物具有一定的網(wǎng)絡(luò)結(jié)構(gòu),HXG溶液的結(jié)構(gòu)比XG的史加致密;HXG溶液攜砂的結(jié)構(gòu)與未攜砂溶液的結(jié)構(gòu)發(fā)生變化;濃度低時(shí)低濃度羥丙基胍膠溶液的內(nèi)部結(jié)構(gòu)隨著濃度增大而增強(qiáng);加入交聯(lián)劑后低濃度羥丙基胍膠溶液形成弱凝膠,網(wǎng)絡(luò)結(jié)構(gòu)明顯增強(qiáng)。本文研究可望為黃原膠體系和羥丙基胍膠凝膠體系的實(shí)際應(yīng)用提供流變學(xué)和減阻理論基礎(chǔ)。
[Abstract]:In this paper, two kinds of modified xanthan gum (HXG) and cationic xanthan gum (CXGG) were obtained. The factors influencing the process of modified xanthan gum were investigated and the appropriate reaction conditions were obtained. The difference of rheological and microrheological properties, sand carrying capacity and drag reduction of xanthan gum solution before and after modification were studied. The changes of microrheology and rheological indexes during the crosslinking process of hydroxypropyl guanidine gum with low concentration were investigated and the microrheological kinetic model of the crosslinking process of hydroxypropyl guanidine gum was established. The microrheological properties of modified xanthan gum and crosslinked hydroxypropyl guanidine gel were studied by microrheometer in order to study the mechanism of static sand loading. The microstructure of xanthan gum solution and hydroxypropyl guanidine gel solution before and after crosslinking were studied by low temperature field emission electron scanning microscope (Cyro-FESEM). The main conclusions are as follows: (1) the etherification reaction of xanthan gum with 1o 2-epoxypropane and 3-chloro-2-hydroxypropyltrimethylammonium chloride can obtain two modified products, hydroxypropyl xanthan gum and cationic xanthan gum. The viscosity of the two modified xanthan adhesives increased obviously and the proper etherification reaction conditions were obtained. Infrared X-ray diffraction (IR), elemental analysis and 1H-NMR showed that the expected products HXG and CXG.2xanthan gum and their derivative solution showed shear-thinning rheological properties after etherification. The nonlinear co-rotating Jeffreys model can be used to simulate the flow curve HXG with higher viscosity, viscoelasticity and thixotropy, stable acid and alkali resistance to salt, better temperature resistance and sand carrying performance. Cationic modified CXG also has higher viscoelasticity and good thixotropy. However, the salt tolerance and acid and alkaline resistance of hydroxypropylguanidine gel were decreased. 3) the change of macroviscosity factor MVI value and macroscopic Viscosity index with crosslinking agent and pH regulator during microrheological crosslinking of hydroxypropyl guanidine gum was investigated. The suitable amount of crosslinking agent and pH regulator decreased with the increase of temperature. The crosslinking process of hydroxypropyl guanidine gel can be fitted with the first order model of microrheological reaction kinetics. 4) the viscosity of the crosslinking process of hydroxypropyl guanidine gum with low concentration in shear flow field is obtained. The effects of shear rate and temperature on the crosslinking process of hydroxypropyl guanidine gel with low concentration. 5HXG and XG solutions have drag reduction effects in smooth and rough tubes. For the HXG and XG systems of 1g/L, The maximum drag reduction rate in smooth tube is 72.8% and 68.1% respectively. The drag reduction rate increases with the increase of concentration. The total concentration was 1 g / L, xanthan gum and hydroxypropyl guanidine gum, xanthan gum and hydrophobic amphoteric cellulose derivative FAG-500, FAG-500 and hydroxypropyl guanidine gum showed synergistic drag reduction effect. When the xanthan gum was mixed with long chain alkylamine amine oxide (LQ-FJ), the drag reduction rate decreased by. 6) Cyro-FESEM diagram showed that, Xanthan gum and its derivatives have a certain network structure. The structure of HXG solution is more compact than that of XG. The sand carrying structure of HXG solution and the structure of unloaded HXG solution change. The internal structure of low concentration hydroxypropyl guanidine gel solution increases with the increase of concentration, and the low concentration hydroxypropyl guanidine gel solution forms weak gel with the addition of crosslinking agent, and the network structure is obviously enhanced. This study is expected to provide a theoretical basis for rheology and drag reduction of xanthan gum system and hydroxypropyl guanidine gel system.
【學(xué)位授予單位】:華東理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TE357.12
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 吉毅,李宗石,喬衛(wèi)紅;瓜爾膠的化學(xué)改性[J];日用化學(xué)工業(yè);2005年02期
2 郭瑞;丁恩勇;;黃原膠的結(jié)構(gòu)、性能與應(yīng)用[J];日用化學(xué)工業(yè);2006年01期
3 汪凱明;;我國(guó)非常規(guī)油氣資源勘探開發(fā)前景[J];國(guó)外測(cè)井技術(shù);2009年03期
4 方波;鄒春昱;何良好;朱廣宇;呂婷陽;盧海偉;王進(jìn)爽;侯向前;;陽離子Gemini表面活性劑18-3-18/水楊酸鈉膠束體系流變和減阻性能研究[J];高�;瘜W(xué)工程學(xué)報(bào);2013年01期
5 胡忠前;馬喜平;何川;王紅;杜劍;;國(guó)外低傷害壓裂液體系研究新進(jìn)展[J];海洋石油;2007年03期
6 陳馥,劉力銘,王安培,劉福梅;無聚合物清潔壓裂液的實(shí)驗(yàn)室研究[J];精細(xì)化工;2002年S1期
7 王建平;寸少妮;賈紅娟;;低滲透油藏單井壓裂增產(chǎn)技術(shù)綜述及新進(jìn)展[J];遼寧化工;2012年09期
8 朱剛卉;羧甲基纖維素鈉和羥乙基纖維素在日化產(chǎn)品中的應(yīng)用[J];日用化學(xué)品科學(xué);2005年04期
9 丁云宏,叢連鑄,盧擁軍,雷群,管保山,慕立俊;CO_2泡沫壓裂液的研究與應(yīng)用[J];石油勘探與開發(fā);2002年04期
10 趙謀明,葉林,李少霞,徐建祥,彭志英;黃原膠與其它食品膠協(xié)同增效作用及其耐鹽穩(wěn)定性的研究[J];食品與發(fā)酵工業(yè);1999年02期
,本文編號(hào):1946548
本文鏈接:http://sikaile.net/kejilunwen/shiyounenyuanlunwen/1946548.html