面向模式識(shí)別的過(guò)程神經(jīng)網(wǎng)絡(luò)模型構(gòu)建及在沉積微相判別中的應(yīng)用
本文選題:模式識(shí)別 + 模糊推理; 參考:《東北石油大學(xué)》2017年碩士論文
【摘要】:大慶油田由于取心成本高,取心井?dāng)?shù)目少,因而通過(guò)分析取心樣品來(lái)判別沉積微相的微相類(lèi)型存在很大的局限性。本課題利用油田中已經(jīng)取心的油井的測(cè)井曲線(xiàn)數(shù)據(jù),結(jié)合專(zhuān)家知識(shí),研究過(guò)程神經(jīng)網(wǎng)絡(luò)的模式識(shí)別方法及應(yīng)用技術(shù),將研究成果應(yīng)用于非取心井的沉積微相判相中,實(shí)現(xiàn)對(duì)某一區(qū)塊的石油儲(chǔ)量及開(kāi)采價(jià)值評(píng)估。結(jié)合沉積微相實(shí)際分析發(fā)現(xiàn),就判相數(shù)據(jù)而言,除了測(cè)井曲線(xiàn)相關(guān)定量數(shù)據(jù)外,可能專(zhuān)家經(jīng)驗(yàn)等定性信息同樣會(huì)對(duì)判別結(jié)果產(chǎn)生影響,而且微相類(lèi)型本身也具有模糊性和隨機(jī)性,因此如果只采用定量識(shí)別的模型進(jìn)行判相,那么識(shí)別結(jié)果的誤差可能會(huì)較大。針對(duì)上述不足,本文題出了模糊推理過(guò)程神經(jīng)網(wǎng)絡(luò)模型和基于云變化的混合計(jì)算過(guò)程神經(jīng)網(wǎng)絡(luò)模型來(lái)實(shí)現(xiàn)對(duì)沉積微相的判別;一方面,針對(duì)有專(zhuān)家經(jīng)驗(yàn)的評(píng)判規(guī)則數(shù)據(jù),利用模糊推理可實(shí)現(xiàn)對(duì)測(cè)井相的定性信息進(jìn)行定量處理以簡(jiǎn)化判別規(guī)則,提取有效的判別數(shù)據(jù),進(jìn)而提高沉積微相判別的精度;另一方面,針對(duì)有模糊信息的數(shù)據(jù),利用云模型可將判相數(shù)據(jù)中的定性信息進(jìn)行轉(zhuǎn)化,從而納入計(jì)算過(guò)程,保證了原始數(shù)據(jù)的完整性與客觀性;考慮到測(cè)井相的數(shù)據(jù)是隨深度變化的曲線(xiàn)這一特征,因而采用過(guò)程神經(jīng)網(wǎng)絡(luò)的過(guò)程式輸入優(yōu)勢(shì),借助其具有對(duì)時(shí)、空二維信息處理能力和不斷優(yōu)化過(guò)程神經(jīng)網(wǎng)絡(luò)的學(xué)習(xí)機(jī)制來(lái)提高沉積微相判別的準(zhǔn)確度。課題以沉積微相數(shù)據(jù)要素為基礎(chǔ),以沉積微相識(shí)別問(wèn)題所建立的模型和算法為核心,按照軟件工程的開(kāi)發(fā)模式,進(jìn)行軟件設(shè)計(jì)和集成開(kāi)發(fā)后形成了沉積微相模式識(shí)系統(tǒng),并取得了較好的實(shí)驗(yàn)分析結(jié)果。課題的研究對(duì)于沉積微相判別資料實(shí)際處理,微相類(lèi)型準(zhǔn)確表達(dá)具有較高的實(shí)際價(jià)值和應(yīng)用前景。
[Abstract]:Because the cost of coring is high and the number of coring wells is small in Daqing Oilfield, it is very limited to judge the microfacies of sedimentary microfacies by analyzing coring samples. In this paper, using the logging curve data of well coring in oilfield, combining with expert knowledge, the pattern recognition method and application technology of neural network are studied, and the research results are applied to the sedimentary microfacies judgement of non-coring wells. To realize the evaluation of the oil reserves and exploitation value of a certain block. Combined with the actual analysis of sedimentary microfacies, it is found that, in terms of phase judgment data, besides the quantitative data related to logging curves, the qualitative information such as possible expert experience will also have an impact on the discriminant results. Moreover, the microphase type itself is fuzzy and random, so if only the quantitative recognition model is used to judge the phase, the error of the recognition result may be large. In order to solve the above problems, the fuzzy inference process neural network model and the mixed computing process neural network model based on cloud change are proposed to distinguish sedimentary microfacies, on the one hand, for the evaluation rule data with expert experience, the fuzzy inference process neural network model and the mixed computing process neural network model based on cloud variation are proposed. Fuzzy reasoning can be used to quantitatively process the qualitative information of logging facies in order to simplify the discriminant rules, extract effective discriminant data and improve the accuracy of sedimentary microfacies discrimination. On the other hand, for the data with fuzzy information, By using cloud model, the qualitative information in phase data can be transformed into the calculation process, which ensures the integrity and objectivity of the original data, considering the fact that the log phase data is a curve varying with depth. Therefore, the process input advantage of process neural network (PNN) is used to improve the accuracy of sedimentary microfacies discrimination by virtue of its ability to process the two dimensional information in time and space and to optimize the learning mechanism of process neural network continuously. Based on the data elements of sedimentary microfacies, the model and algorithm of sedimentary microfacies recognition are taken as the core. According to the development mode of software engineering, a sedimentary microfacies pattern recognition system is formed after software design and integrated development. Good experimental results are obtained. The research in this paper has a high practical value and application prospect for the actual processing of sedimentary microfacies discrimination data and the accurate expression of microfacies types.
【學(xué)位授予單位】:東北石油大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TE319;TP183
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉凌云;許少華;;基于云變換的混合計(jì)算模型在水淹層識(shí)別中的應(yīng)用[J];計(jì)算機(jī)系統(tǒng)應(yīng)用;2016年07期
2 許少華;張亞光;李學(xué)貴;;一種基于逆向云變換的混合推理神經(jīng)網(wǎng)絡(luò)[J];計(jì)算機(jī)技術(shù)與發(fā)展;2015年03期
3 許少華;陳妍;許辰;張亞光;;一種基于正向云變換的混合計(jì)算神經(jīng)網(wǎng)絡(luò)及其應(yīng)用[J];計(jì)算機(jī)與數(shù)字工程;2014年12期
4 江凌波;馬超;談鑒峰;王加玉;;一種新型過(guò)程神經(jīng)元網(wǎng)絡(luò)安全模型[J];中國(guó)科技論文;2013年04期
5 宋莉莉;張宏立;;應(yīng)用改進(jìn)粒子群算法辨識(shí)Hammerstein模型[J];計(jì)算機(jī)仿真;2013年03期
6 荊林海;;“制作DNA分子雙螺旋結(jié)構(gòu)模型”實(shí)驗(yàn)的教學(xué)組織[J];生物學(xué)通報(bào);2011年10期
7 趙桂青;;東辛油田營(yíng)86-87區(qū)塊沉積微相與儲(chǔ)層物性關(guān)系研究[J];內(nèi)蒙古石油化工;2010年11期
8 史彥堯;宋新民;郝志海;俞宏偉;;基于沉積微相-巖石相建立礫巖油藏測(cè)井參數(shù)解釋模型[J];吉林大學(xué)學(xué)報(bào)(地球科學(xué)版);2010年03期
9 劉洋洋;嵇啟春;;一種改進(jìn)的模板匹配的數(shù)字識(shí)別算法[J];工業(yè)控制計(jì)算機(jī);2010年05期
10 孫巖;李石君;;基于人工神經(jīng)網(wǎng)絡(luò)的軟土沉降預(yù)測(cè)分析[J];交通標(biāo)準(zhǔn)化;2009年21期
相關(guān)博士學(xué)位論文 前1條
1 郭志強(qiáng);基于子空間分析的人臉識(shí)別算法研究[D];武漢理工大學(xué);2010年
相關(guān)碩士學(xué)位論文 前10條
1 王鳳利;基于BP神經(jīng)網(wǎng)絡(luò)和DS證據(jù)理論的疾病預(yù)測(cè)模型研究[D];太原理工大學(xué);2016年
2 范福平;基于模糊推理的網(wǎng)絡(luò)故障診斷技術(shù)研究[D];電子科技大學(xué);2015年
3 張亞光;基于云變換的信息融合方法及智能推理模型的研究[D];東北石油大學(xué);2014年
4 馮子健;蘇里格南區(qū)盒8儲(chǔ)層沉積微相分析[D];西安石油大學(xué);2014年
5 王立瑋;基于云模型和粒子群算法的電力系統(tǒng)無(wú)功優(yōu)化[D];華北電力大學(xué);2014年
6 董志瑋;人工神經(jīng)網(wǎng)絡(luò)優(yōu)化算法研究與應(yīng)用[D];中國(guó)地質(zhì)大學(xué)(北京);2013年
7 高憲偉;應(yīng)用測(cè)井資料定量識(shí)別碳酸鹽巖沉積微相的方法研究[D];成都理工大學(xué);2013年
8 王允霞;蜂群算法的研究及其在人工神經(jīng)網(wǎng)絡(luò)中的應(yīng)用[D];華南理工大學(xué);2013年
9 王丹丹;多層次序列模式挖掘及在抽油機(jī)井狀態(tài)診斷中的應(yīng)用研究[D];東北石油大學(xué);2012年
10 周峰;川中合川地區(qū)上三疊統(tǒng)須家河組二段儲(chǔ)層特征研究[D];成都理工大學(xué);2011年
,本文編號(hào):1912673
本文鏈接:http://sikaile.net/kejilunwen/shiyounenyuanlunwen/1912673.html