煤層氣濃縮分離工藝的研究
本文選題:煤層氣 + 濃縮; 參考:《西安科技大學(xué)》2017年碩士論文
【摘要】:煤層氣在國內(nèi)外化工生產(chǎn)、發(fā)電和燃料方面都具有不可替代的使用價值。但目前大部分低濃度煤層氣資源并未被完全利用,主要是因為煤層氣組分中含有很多不可燃組分N2。甲烷和氮氣分子動力學(xué)直徑比較接近,很難將其分開,因此將甲烷和氮氣的有效分離是濃縮甲烷的關(guān)鍵技術(shù),這也是解決低濃度煤層氣排空需要我們迫切解決的問題。目前未達到30%煤層氣通常被直接排放到大氣中,造成嚴重的環(huán)境污染和資源浪費,針對上述存在的現(xiàn)狀,本論文首次通過溶劑吸收的方法來濃縮煤層氣中的甲烷,具體的研究內(nèi)容包括:(1)溶劑的選擇,針對某礦井煤層氣中各個組分(主要是氮氣和甲烷)的特點,從吸收甲烷的角度選擇并模擬計算的溶劑有:CC14、四乙氧基硅烷(TEOS)、四甲基硅烷(TMS)、十四酸異丙酯(IPM)、碳酸丙烯酯(PC)、聚乙二醇二甲醚(DEPG)3,3-二甲基戊烷,從吸收氮氣的角度選擇并模擬的溶劑有:N,N-二甲基酰胺(DMF)和N-甲基吡咯酮(NMP),在相同的條件下分析了各種溶劑的物性參數(shù),包括密度、傳熱系數(shù)、粘度、飽和蒸汽壓、表面張力等參數(shù),此外還計算了各種溶劑對煤層氣組分的溶解度,并做了溶解度曲線對比。(2)從含氧和不含氧煤層氣兩個角度研究低煤層氣濃縮工藝,使用CC14溶劑對含氧煤層氣的吸收工藝進行建模,結(jié)果將甲烷的體積分數(shù)從30%濃縮到91.5%,回收率為85%,達到國家二級天然氣使用指標,可作為基本的化工原料;將甲烷體積分數(shù)為5%煤層氣濃縮到34%,回收率73.4%,達到國家三級煤層氣使用指標,這類濃度的煤層氣可用于工業(yè)及民用發(fā)電,生活燃料。使用DEPG溶劑對甲烷濃度為25.3%的無氧煤層氣進行穩(wěn)態(tài)建模,結(jié)果可以將甲烷的體積分數(shù)從25.3%濃縮到70%,回收率為高達83%,吸收過程的液氣比在1.0左右,效果可觀。(3)對甲烷濃度為25.3%的煤層氣吸收工藝采用速率型建模,并對比速率型模型和平衡型模型的區(qū)別,誤差在3%以內(nèi),模擬結(jié)果可作為煤層氣吸收工藝工業(yè)化的理論支撐,此外還計算了設(shè)備參數(shù)(塔徑、塔板數(shù)、板間距、溢流堰高度、塔板類型),最后對工藝中的影響因素進行調(diào)優(yōu)和分析。
[Abstract]:Coalbed methane has irreplaceable value in chemical production, power generation and fuel production at home and abroad. However, most of the low concentration CBM resources have not been fully utilized, mainly because there are many non-combustible components N _ 2 in the coal-bed methane components. The molecular dynamics of methane and nitrogen are similar in diameter, so it is very difficult to separate methane from nitrogen. Therefore, the effective separation of methane and nitrogen is the key technology of methane concentration, which is also an urgent problem that we need to solve in order to solve the problem of coal bed methane emptying with low concentration. At present, coal bed methane (CBM) which is not up to 30% is usually discharged directly into the atmosphere, which causes serious environmental pollution and waste of resources. In view of the above existing situation, this paper firstly concentrates methane in CBM by solvent absorption method. The specific contents of the study include the selection of solvents, aiming at the characteristics of various components (mainly nitrogen and methane) in coalbed methane in a mine. The solvents selected and simulated from the angle of methane absorption are: CC14, Tetraethoxysilane, Tetramethylsilane, Isopropyl Tetradecanoate (IPMN), Propylene Carbonate (PCO), Polyethylene Glycol dimethyl Ether (DEPGN), 3-Dimethylpentane. The solvents selected and simulated from the point of view of nitrogen absorption are: (1) N (N) -dimethyl amide (DMF) and N- (methylpyrrolidone) (NMP). Under the same conditions, the physical properties of various solvents, including density, heat transfer coefficient, viscosity, saturated vapor pressure, are analyzed. Surface tension and other parameters, in addition, the solubility of various solvents to the components of coal-bed methane is calculated, and the solubility curve is compared. The absorption process of oxygen-containing coalbed methane was modeled by using CC14 solvent. The results showed that the volume fraction of methane was concentrated from 30% to 91.5%, and the recovery rate was 85%, which reached the national secondary natural gas usage index and could be used as a basic chemical raw material. The methane concentration of 5% CBM is condensed to 34%, and the recovery rate is 73.4%. The methane concentration can be used in industrial and civil power generation and domestic fuel. The steady-state model of anaerobic coal-bed methane with 25. 3% methane concentration was established by using DEPG solvent. The volume fraction of methane was condensed from 25. 3% to 70%, the recovery rate was as high as 83%, and the ratio of liquid to gas in the absorption process was about 1. 0. The rate model of methane absorption process with 25. 3% methane concentration is adopted, and the difference between rate model and equilibrium model is compared. The error is less than 3%. The simulation results can be used as theoretical support for industrialization of coal bed methane absorption process. In addition, the equipment parameters (tower diameter, tray number, plate spacing, overflow Weir height, tray type, etc.) were calculated. Finally, the influencing factors in the process were optimized and analyzed.
【學(xué)位授予單位】:西安科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TD845
【參考文獻】
相關(guān)期刊論文 前10條
1 劉建勝;王曉蕾;;2001—2013年我國煤礦瓦斯爆炸事故基本特征與發(fā)生規(guī)律探討[J];中州煤炭;2014年09期
2 朱菁;任小坤;肖正;劉利亞;;低濃度含氧煤層氣深冷精餾流程模擬研究[J];礦業(yè)安全與環(huán)保;2014年04期
3 王鈺;;我國煤層氣開發(fā)利用現(xiàn)狀及發(fā)展建議[J];化學(xué)工業(yè);2013年01期
4 施海珊;王煤;馬睿;;低濃度煤層氣吸附過程的模擬[J];煤炭學(xué)報;2012年09期
5 王勇;張玉璽;白劍鋒;;LNG制冷HYSYS計算模型研究[J];天然氣與石油;2012年04期
6 裴愛霞;張立勝;施錦華;周健;畢麗華;;含氧煤層氣液化精餾提純技術(shù)模擬研究[J];天然氣化工(C1化學(xué)與化工);2012年02期
7 周圓圓;楊華偉;張東輝;;甲烷/氮氣變壓吸附分離的實驗與模擬[J];天然氣化工(C1化學(xué)與化工);2011年05期
8 王勇;王文武;呼延念超;郭亞紅;付源;;油田伴生氣乙烷回收HYSYS計算模型研究[J];石油與天然氣化工;2011年03期
9 楊雄;劉應(yīng)書;李永玲;張傳釗;孟宇;楊海軍;;原料氣濃度對低濃度含氧煤層氣吸附分離效果的影響[J];礦業(yè)安全與環(huán)保;2011年03期
10 席芳;林文勝;顧安忠;劉薇;齊研科;;煤層氣在活性炭和炭分子篩上變壓吸附分離[J];化工學(xué)報;2010年S2期
相關(guān)重要報紙文章 前1條
1 齊惠卿;;低濃度煤層氣利用大有可為[N];中國化工報;2012年
相關(guān)碩士學(xué)位論文 前2條
1 朱耀劍;水合物法分離低濃度煤層氣熱力學(xué)模型研究[D];太原理工大學(xué);2014年
2 李慶會;基于非平衡級模型的低溫甲醇洗流程模擬研究[D];大連理工大學(xué);2012年
,本文編號:1911792
本文鏈接:http://sikaile.net/kejilunwen/shiyounenyuanlunwen/1911792.html