氣體鉆井環(huán)空堵塞安全解堵壓力研究
本文選題:氣體鉆井 + 環(huán)空堵塞 ; 參考:《西南石油大學(xué)》2015年碩士論文
【摘要】:在氣體鉆井過程中,可能因?yàn)榈貙赢a(chǎn)氣、地層出水或施工不當(dāng)?shù)纫蛩卦斐删谑Х€(wěn)從而導(dǎo)致環(huán)空堵塞,堵塞后由于注氣或產(chǎn)氣引起環(huán)空壓力集聚。當(dāng)壓力集聚一定程度后,高壓氣體沖破巖屑堵塞段形成高速氣流并攜帶巖屑流動到井口,對井口造成沖擊和沖蝕。因此為確保井口的安全,需要獲知此類情況井口受到的沖擊力和沖蝕速度。本文針對氣體鉆井的這種特殊工況下的安全問題展開了以下研究并取得了一定的認(rèn)識: (1)將地層滲流模型、產(chǎn)氣模型、狀態(tài)方程以及達(dá)西公式耦合,建立了井底壓力的計(jì)算模型。通過模型計(jì)算,得出在環(huán)空堵塞后,堵塞段下部空間的壓力隨時間的變化規(guī)律:在堵塞剛發(fā)生時井底壓力上升速度較快,隨著時間的增加,井底壓力上升速度減緩,當(dāng)?shù)貙赢a(chǎn)氣量與堵塞段流如氣量相等時壓力平穩(wěn)。 (2)采用實(shí)驗(yàn)手段,研究了壓力沖破巖屑瞬間的稠密度氣固兩相流動規(guī)律。通過實(shí)驗(yàn)數(shù)據(jù)定量分析了憋堵壓力、憋堵巖屑質(zhì)量與巖屑速度的關(guān)系;隨著憋堵壓力的上升,巖屑顆粒速度近似成線性增加;隨著巖屑顆粒總質(zhì)量的增加,巖屑的速度降低。 (3)通過仿真求解,研究了在壓力突破后,高壓高速氣固兩相流從井底流動至井口的流動規(guī)律,得出憋堵壓力與流動速度的規(guī)律。建立了四通井口和安裝旋轉(zhuǎn)防噴器的井口的仿真模型,對比了高壓高速氣固兩相流在兩種井口流動的流場,發(fā)現(xiàn)在相同情況下,四通處的流速和壓力均小于旋轉(zhuǎn)防噴器。通過改變邊界條件,分析出了隨著井底壓力上升時四通的受力增加明顯旋轉(zhuǎn)防噴器。 (4)研究建立了根據(jù)地層情況、工程情況計(jì)算井口受力的計(jì)算方法,為堵塞后的安全施工提供了理論依據(jù)。建議在本文基礎(chǔ)上,定量研究解堵壓力,為現(xiàn)場卡鉆后的解堵提供指導(dǎo)意義。
[Abstract]:In the process of gas drilling, well wall instability may be caused by formation gas production, formation water production or improper construction, which will lead to annulus blockage, which will lead to annulus pressure concentration due to gas injection or gas production after plugging. When the pressure is concentrated to a certain extent, the high pressure gas breaks through the blockage section of cuttings to form a high speed airflow and carries the cuttings to the wellhead, which causes impact and erosion on the wellhead. Therefore, in order to ensure the safety of wellhead, it is necessary to know the impact force and erosion velocity of the wellhead. In this paper, the following research is carried out on the safety of gas drilling under this special condition and some understanding is obtained: 1) by coupling formation percolation model, gas production model, equation of state and Darcy formula, the calculation model of bottom hole pressure is established. Through the model calculation, it is concluded that the pressure in the lower space of the clogging section changes with time after the annulus clogging: the bottomhole pressure rises faster at the beginning of the blockage, and slows down with the increase of time. The pressure is stable when the gas production of the local layer is equal to that of the blocked flow. 2) the law of gas-solid two-phase flow at the moment of pressure breaking through cuttings is studied by means of experiment. According to the experimental data, the relationship between the choking pressure, the quality of the plugging cuttings and the velocity of the cuttings is quantitatively analyzed. With the increase of the choking pressure, the velocity of the cuttings increases linearly, and the velocity of the cuttings decreases with the increase of the total mass of the cuttings. 3) the flow law of high pressure and high speed gas-solid two-phase flow from bottom hole to wellhead is studied by simulation, and the law of choking pressure and flow velocity is obtained. The simulation model of four-way wellhead and well head with rotary blowout preventer is established. The flow field of high-pressure and high-speed gas-solid two-phase flow in two kinds of wellhead is compared. It is found that the velocity and pressure of four-way flow are smaller than that of rotary blowout preventer under the same conditions. By changing the boundary conditions, a rotating blowout preventer with the increase of bottom hole pressure is analyzed. 4) the method of calculating wellhead force according to formation condition and engineering condition is established, which provides a theoretical basis for safe construction after blockage. On the basis of this paper, it is suggested that quantitative study of plugging removal pressure can provide guidance for plugging removal after field drilling.
【學(xué)位授予單位】:西南石油大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TE28
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 林惟鋟;黃亮;蔡茂林;;氣動管道中壓力波的傳播特性分析[J];北京航空航天大學(xué)學(xué)報;2011年05期
2 張濤;段慕白;萬里平;;氣體鉆井鉆具內(nèi)氣體沖蝕機(jī)理研究[J];重慶科技學(xué)院學(xué)報(自然科學(xué)版);2012年04期
3 畢雪亮;陶麗杰;翟洪軍;高立軍;呂媛媛;;空氣鉆井最小流量計(jì)算的修正模型[J];斷塊油氣田;2008年02期
4 崔之健;計(jì)算空氣鉆井參數(shù)的新方法[J];江漢石油學(xué)院學(xué)報;1996年04期
5 蔣振偉;鄧凱;楊建榮;姜生輝;;提高氣體鉆井安全性和自動化程度的分析與應(yīng)用[J];內(nèi)江科技;2013年03期
6 馮靚;陳一健;張昆;陳勇;;空氣鉆井井下燃爆監(jiān)測系統(tǒng)[J];石油機(jī)械;2007年05期
7 郭建華;佘朝毅;李黔;孫萬里;;氣體鉆井井筒沖蝕作用定量分析及控制方法[J];石油學(xué)報;2007年06期
8 祝效華;劉少胡;童華;;氣體鉆井鉆桿沖蝕規(guī)律研究[J];石油學(xué)報;2010年06期
9 唐貴,雷桐,舒秋貴,孟英峰;氣體鉆井井筒與地層流動耦合分析[J];石油鉆采工藝;2005年04期
10 連志龍;周英操;申瑞臣;趙慶;白仙莉;;無意外風(fēng)險鉆井(NDS)技術(shù)探討[J];石油鉆采工藝;2009年01期
相關(guān)博士學(xué)位論文 前1條
1 姚建林;氣體鉆井環(huán)空流場分析及巖屑對管柱的沖蝕特性研究[D];上海大學(xué);2011年
,本文編號:1865072
本文鏈接:http://sikaile.net/kejilunwen/shiyounenyuanlunwen/1865072.html