管道氣液兩相流流型及熱—流—固耦合數(shù)值模擬研究
發(fā)布時(shí)間:2018-05-06 10:22
本文選題:CFD + 氣液兩相流; 參考:《長江大學(xué)》2015年碩士論文
【摘要】:在油氣生產(chǎn)領(lǐng)域,油、氣、水通常是從油井同時(shí)產(chǎn)出,并以氣液兩相的形式進(jìn)行長距離輸送。在管道氣液兩相的流動(dòng)過程中,當(dāng)輸送管道系統(tǒng)內(nèi)為多相流動(dòng)時(shí),流體的速度和壓力不斷變化,產(chǎn)生不穩(wěn)定流動(dòng)和變形(或運(yùn)動(dòng)),這種不穩(wěn)定流動(dòng)對(duì)管道變形的變形產(chǎn)生很大影響會(huì)導(dǎo)致管道系統(tǒng)的損壞。因此,針對(duì)管道系統(tǒng)的熱-流-固耦合特性進(jìn)行的深入研究具有廣泛的工程背景和現(xiàn)實(shí)意義。本文從數(shù)值模擬角度對(duì)油氣管道兩相流流型、管道-地層溫度場、流場與管道壁之間的熱-流-固耦合情況進(jìn)行了數(shù)值預(yù)測研究。本文首先采用VOF多相流模型和標(biāo)準(zhǔn)k-e模型湍流模型對(duì)水平管道、鉛直管道和夾角60°的傾斜管道內(nèi)常見的幾種流型進(jìn)行了數(shù)值計(jì)算和分析。模擬結(jié)果表明:建立的二維模型可再現(xiàn)Baker流型圖關(guān)于水平管道中常見的7種流型,即彌散泡狀流、泡狀流、活塞流、段塞流、環(huán)狀流、層流和波浪流,模擬結(jié)果與三維模型比較發(fā)現(xiàn)兩種模型下流型模擬結(jié)果差異性較小;數(shù)值模擬結(jié)果同時(shí)再現(xiàn)了Taitel流型圖關(guān)于鉛直管和傾斜管中常見的5種流型,即彌散泡狀流、泡狀流、段塞流和環(huán)狀流,流型預(yù)測達(dá)到預(yù)期效果,并對(duì)傾斜管中氣、液相流量的變化對(duì)傾斜管道內(nèi)流型的影響進(jìn)行了研究。此外,將112組不同角度下的流型模擬結(jié)果與Taitel流型圖進(jìn)行對(duì)比,得到以下結(jié)論:在管道流型的數(shù)值模擬中,如若不考慮氣體的可壓縮性,在氣相折算速度特別大的情況下管道內(nèi)只會(huì)出現(xiàn)環(huán)狀流一種流型,如需進(jìn)行氣相折算速度較大時(shí)的流型模擬,需要對(duì)模型進(jìn)行修正;氣液兩相流在自下而上傾斜角度較大或者近似鉛直的管道中經(jīng)常會(huì)呈現(xiàn)段塞流,對(duì)這種管道進(jìn)行段塞流的特定研究具有十分重要的意義;管道傾角的變化會(huì)對(duì)管內(nèi)可能出現(xiàn)的流型產(chǎn)生了較為明顯的影響;在傾斜管道的數(shù)值模擬中頻繁出現(xiàn)了霧狀流這種流型,這種流型在Taitel流型圖中是沒有的,而在傾斜管道對(duì)霧狀流研究中卻不可忽略。論文進(jìn)而對(duì)某集輸管道進(jìn)行了模擬研究,整個(gè)管路由三段水平管路(L1,L3,L5),兩段傾斜管路(L2,L4)和一段垂直管路組成,管長9.1 m,內(nèi)徑0.06m,壁厚0.007m。在本研究中,首先采用FLUENT軟件對(duì)管道埋地部分進(jìn)行溫度場數(shù)值預(yù)測,對(duì)管道的最優(yōu)埋地深度進(jìn)行優(yōu)化并解算得出管道埋地敷設(shè)情況下冬夏兩季的管道壁面溫度。研究結(jié)果表明,在不同季節(jié)溫度條件下管道周圍土壤溫度場分布差異很大,有保溫層情況將比不帶保溫層的受影響范圍減少50%-90%,該段管道的最優(yōu)埋地深度是1.2m(存在凍土層),冬夏兩季的管道外壁面溫度的模擬結(jié)果分別為12℃和31℃。在管道-地層溫度場數(shù)值模擬結(jié)果的基礎(chǔ)上采用ANSYS Workbench模塊進(jìn)行管道的熱-流-固耦合分析。采用FLUENT軟件解算得到氣液兩相在集輸管道內(nèi)不同時(shí)刻的兩相分布、界面變化和沿程壓降,并結(jié)合集輸管道各拐角及特定截面處的氣相體積分?jǐn)?shù)云圖和速度曲線圖對(duì)管內(nèi)流型進(jìn)行了特定分析。結(jié)果表明:不同管段分別出現(xiàn)了分層流、波浪流、氣泡流、段塞流和環(huán)狀流等多種流型,氣液兩相流在流經(jīng)水平段進(jìn)入傾斜向上管路或者垂直向上管路時(shí),在拐角處最容易產(chǎn)生積液;在管道90°彎管處容易出現(xiàn)較大漩渦。將流體對(duì)管道內(nèi)壁面的壓力載荷、管道體上的溫度載荷加載到管道上,同時(shí)對(duì)管道進(jìn)行固定約束,解算得到管道固體壁面的最大位移量、等效應(yīng)力和等效應(yīng)變。結(jié)果表明:管道的管材、壁面溫度和管內(nèi)流量的變化都會(huì)對(duì)長輸管道的變形位置、變形大小和等效應(yīng)力、應(yīng)變產(chǎn)生影響,溫度載荷和氣液量變化產(chǎn)生的影響較為明顯。
[Abstract]:In the field of oil and gas production, oil, gas and water are usually produced at the same time from the oil well and are transported in a long distance in the form of gas-liquid two phases. In the process of gas and liquid two-phase flow in the pipeline, when the pipeline system is multiphase flow, the velocity and pressure of the fluid are constantly changing, resulting in unstable flow and deformation (or motion), such unstable flow, The deformation of the pipeline has a great influence on the damage of the pipeline system. Therefore, the deep research on the thermal fluid solid coupling characteristics of the pipeline system has extensive engineering background and practical significance. The heat of the two phase flow, the temperature field of the pipeline formation and the heat between the flow field and the wall of the pipeline from the numerical simulation point of view. The numerical prediction study of the fluid solid coupling situation is carried out. Firstly, the VOF multiphase flow model and the standard k-e model turbulence model are used to calculate and analyze several common flow patterns in the horizontal pipe, the plumbing pipe and the inclined pipe with the angle of 60 degrees. The simulation results show that the established two-dimensional model can be reproduced by the Baker flow pattern about water. 7 common flow patterns in flat pipes, namely, dispersion bubble flow, bubble flow, piston flow, slug flow, annular flow, laminar flow and wave flow, are compared with the three-dimensional model. The results of the two models are less different, and the results of numerical simulation reproduce the 5 common flow patterns of the Taitel flow pattern on the plumbing and the inclined tube. Diffusion bubble flow, bubbly flow, slug flow and annular flow, flow pattern prediction reached the expected effect, and the influence of the change of gas and liquid flow in the inclined pipe on the internal flow pattern of the inclined pipe was studied. In addition, the flow pattern simulation results under 112 groups of different angles were compared with the Taitel flow pattern, and the following conclusions were obtained: the number of flow patterns in the pipeline In the value simulation, if the compressibility of gas is not considered, there is only a circular flow pattern in the pipe in the case of high gas phase conversion speed. If the flow pattern is simulated with high gas phase conversion speed, it is necessary to modify the model. The gas and liquid two phase flow is in a large or nearly straight pipeline. The slug flow is often presented, which is of great significance to the specific study of the slug flow in this kind of pipeline. The change in the dip angle of the pipe will have a more obvious effect on the possible flow pattern in the tube; the flow pattern of the foggy flow appears frequently in the numerical simulation of the inclined pipe, and this flow pattern is not in the Taitel flow pattern. It is not negligible in the study of the foggy flow in the inclined pipeline. The paper then simulated the pipeline of a certain gathering pipeline. The whole pipe route is composed of three segments (L1, L3, L5), two segments (L2, L4) and a vertical line, the length of the pipe is 9.1 m, the inner diameter 0.06m, and the wall thickness 0.007m. in this study, the pipeline is first buried by the FLUENT software. The ground part carries out the numerical prediction of the temperature field, optimizes the optimal buried depth of the pipeline and calculates the wall temperature of the pipeline in the two quarter of winter and summer in the pipeline buried. The results show that the distribution of soil temperature field around the pipeline is very different under different seasonal temperature conditions, and the condition of the insulation layer will be more than that without the insulation layer. The optimum burying range is 50%-90%, and the optimal buried depth of the pipeline is 1.2m (frozen soil layer). The simulation results of the outer wall temperature of the pipeline in the two quarter of winter and summer are 12 and 31, respectively. On the basis of the numerical simulation results of the pipe formation temperature field, the ANSYS Workbench module is used to analyze the heat flow solid coupling analysis of the pipes. The FLUENT software solution is used. The two phase distribution of gas and liquid two phases in the gathering pipeline, the interface change and the pressure drop along the path are calculated, and the internal flow pattern of the pipe is analyzed with the gas phase volume fraction and velocity curves at the corner of the gathering pipeline and the specific cross section. The results show that the stratified flow, wave flow and bubble flow appear in the different pipe segments, respectively. In a variety of flow patterns, such as slug flow and annular flow, when the gas and liquid two phase flow enters the inclined upward pipe or vertical upward pipeline through the horizontal section, it is the most easy to produce the fluid at the corner, and the larger whirlpool is easy to appear at the 90 degree bend pipe of the pipeline. The maximum displacement, equivalent stress and equivalent strain of the pipe solid wall are obtained by the fixed constraint on the pipe. The results show that the pipe material, the wall temperature and the flow in the tube will affect the deformation position, the deformation size and the equivalent stress, the stress and the change of the temperature load and the gas and liquid quantity. The influence is more obvious.
【學(xué)位授予單位】:長江大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TE832
【參考文獻(xiàn)】
相關(guān)期刊論文 前2條
1 勞力云,鄭之初,吳應(yīng)湘,李東暉;關(guān)于氣液兩相流流型及其判別的若干問題[J];力學(xué)進(jìn)展;2002年02期
2 金俊卿;鄭云萍;;FLUENT軟件在油氣儲(chǔ)運(yùn)工程領(lǐng)域的應(yīng)用[J];天然氣與石油;2013年02期
相關(guān)博士學(xué)位論文 前1條
1 張引弟;乙烯火焰反應(yīng)動(dòng)力學(xué)簡化模型及煙黑生成模擬研究[D];華中科技大學(xué);2011年
相關(guān)碩士學(xué)位論文 前1條
1 任憲忠;多相混輸管道90°彎管沖蝕破壞應(yīng)力分析[D];東北石油大學(xué);2014年
,本文編號(hào):1851933
本文鏈接:http://sikaile.net/kejilunwen/shiyounenyuanlunwen/1851933.html
最近更新
教材專著