天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 石油論文 >

油田機采過程高精度建模與生產(chǎn)優(yōu)化應用研究

發(fā)布時間:2018-04-29 19:47

  本文選題:機采過程 + 無跡粒子濾波 ; 參考:《西安石油大學》2016年碩士論文


【摘要】:油田是產(chǎn)能大戶,也是耗能大戶。機械采油是油田主要耗能方式,但其效率普遍不足30%,若每臺采油設備節(jié)省一點能耗,則效益驚人。如何進一步提升抽油機井采油技術和管理水平成為油田普遍關心和亟待解決的關鍵問題。數(shù)字化油田的發(fā)展使井上井下布置了大量檢測裝置,記錄了豐富詳實的工況參數(shù)與產(chǎn)量、能耗數(shù)據(jù),這意味可由數(shù)據(jù)挖掘技術,從大量生產(chǎn)數(shù)據(jù)中挖掘采油工藝潛在規(guī)律,并用數(shù)學模型描述;再通過智能優(yōu)化技術從獲取的工藝規(guī)律中尋找最佳的生產(chǎn)參數(shù),以使得機采系統(tǒng)實時保持最佳運行狀態(tài),實現(xiàn)節(jié)能增效。為此,本文針對油田機采系統(tǒng)數(shù)據(jù)挖掘技術和生產(chǎn)參數(shù)智能優(yōu)化技術的關鍵科學問題展開深入研究,以油田機采系統(tǒng)為研究對象,通過理論研究、仿真實驗及軟件開發(fā)促進油田機采系統(tǒng)實現(xiàn)自主建模、智能優(yōu)化和自動決策,具體包括以下內(nèi)容:(1)提出基于無跡粒子濾波神經(jīng)網(wǎng)絡(UPFNN)的油田機采系統(tǒng)動態(tài)演化建模方法。建立精準的機采工藝模型是實現(xiàn)生產(chǎn)優(yōu)化的前提。由于機采系統(tǒng)受機械、地層、人為等不確定因素影響,難以準確掌握其生產(chǎn)參數(shù)、環(huán)境變量與系統(tǒng)性能之間的變化關系,為此本文提出利用無跡粒子濾波實時更新神經(jīng)網(wǎng)絡的權值和閾值,建立基于無跡粒子濾波神經(jīng)網(wǎng)絡子空間逼近的機采系統(tǒng)非線性動態(tài)演化模型。該方法利用無跡卡爾曼濾波對粒子進行估計,產(chǎn)生重要性密度,并更新粒子,以提高提高粒子濾波精度,從而改善神經(jīng)網(wǎng)絡建模精度。(2)提出基于偏好多目標優(yōu)化的油田機采過程生產(chǎn)參數(shù)優(yōu)化方法。油田為實現(xiàn)油藏的科學、合理化開采,通常需要根據(jù)油藏分布從全局上設計出各采油區(qū)在一段時間內(nèi)的開采量(即給定生產(chǎn)制度)。因此,機采系統(tǒng)優(yōu)化不能以采油量最大和用能最低為目標,而應該以采油量接近某一給定值和用能最低作為優(yōu)化目標。此外,油田機采系統(tǒng)生產(chǎn)優(yōu)化是在各種約束條件下求取目標函數(shù)的最優(yōu)值,屬于復雜的非線性優(yōu)化問題,應用傳統(tǒng)優(yōu)化理論往往遇到困難。帶精英策略的非支配排序遺傳算法通過計算個體之間的擁擠度來回避共享參數(shù)指定問題,并采用精英策略保存父代種群的優(yōu)秀個體,可實現(xiàn)多目標并行優(yōu)化。這使得其在處理工業(yè)過程問題復雜、高維、難以解析得到的優(yōu)化模型時比傳統(tǒng)優(yōu)化方法更具優(yōu)勢。為此,本文首先結(jié)合無跡粒子濾波神經(jīng)網(wǎng)絡建立的機采過程模型和面向生產(chǎn)制度的偏好函數(shù),構(gòu)建偏好多目標優(yōu)化模型,然后采用帶精英策略的非支配排序遺傳算法求解生產(chǎn)參數(shù)的Pareto解集,再通過有序加權獲得Pareto解集上每個方案的綜合評價,最終獲得最佳方案。(3)開發(fā)數(shù)字化油田抽油機群調(diào)度優(yōu)化決策支撐系統(tǒng)。為實現(xiàn)理論指導實際生產(chǎn),本文將上述理論研究通過C#與MATLAB混合編程方式開發(fā)出一套數(shù)字化油田抽油機群調(diào)度優(yōu)化決策支撐系統(tǒng),并植入油田機采生產(chǎn)管理平臺,實現(xiàn)了機采系統(tǒng)的自主建模、智能優(yōu)化和自主決策。
[Abstract]:Oil field is a large capacity and a big energy consumer. Mechanical oil production is the main energy consumption mode of oil field, but its efficiency is generally less than 30%. If each oil production equipment saves a little energy consumption, the benefit is astonishing. How to further improve the oil extraction technology and management level of pumping well becomes the key problem of common concern and urgent solution in the oilfield. A large number of detection devices are arranged in well on the well, and abundant and detailed working condition parameters and output and energy consumption data are recorded. This means that data mining technology can be used to excavate the potential law of oil production process from a large number of production data and describe it with mathematical model, and then the best production is found from the process rules obtained by intelligent optimization technology. In order to keep the optimal operating state of the mechanical production system in real time and achieve energy efficiency and increase efficiency, this paper studies the key scientific problems of the data mining technology of oil field mining system and the intelligent optimization technology of production parameters, and takes the oil field mining system as the research object, and promotes oil through theoretical research, simulation experiment and software development. The field machine mining system realizes independent modeling, intelligent optimization and automatic decision making, which includes the following contents: (1) a dynamic evolution modeling method based on the Untraced particle filter neural network (UPFNN) is proposed for the dynamic evolution of the oil field production system. The establishment of a precise process model is the prerequisite for the production optimization. With the influence of certain factors, it is difficult to accurately grasp the relation between the production parameters and the changes of the environment variables and the system performance. Therefore, this paper proposes to use the non trace particle filter to update the weights and thresholds of the neural network in real time and establish the nonlinear dynamic evolution model of the machine mining system based on the subspace approximation of the Untraced particle filter neural network. The non trace Calman filter is used to estimate the particle, generate the importance density, and update the particle to improve the precision of the particle filtering and improve the precision of the neural network modeling. (2) the optimization method of the production parameters of the oil field production process based on a lot of target optimization is proposed. The distribution of oil reservoirs is designed for a period of time (the given production system) in a period of time. Therefore, the optimization of the production system can not be aimed at the maximum oil production and the lowest energy use, but the production capacity should be close to a given value and the lowest energy use as the optimization target. The optimal value of the objective function under the constraint condition is a complex nonlinear optimization problem. It is difficult to apply the traditional optimization theory. The non dominated sorting genetic algorithm with the elite strategy avoids the shared parameter assignment problem by calculating the crowding degree among individuals, and uses the elite strategy to preserve the outstanding individuals of the parent population. Multi objective parallel optimization is realized. This makes it more advantageous than the traditional optimization method when dealing with the complicated industrial process problem, high dimension and difficult to parse. For this reason, this paper first combines the process model of the non trace particle filter neural network and the preference function facing the production system, and constructs a lot of objective optimization. The model, then using the non dominated sorting genetic algorithm with elite strategy to solve the Pareto solution set of the production parameters, and then through the ordered weighting to obtain the comprehensive evaluation of each scheme on the Pareto solution set, and finally get the best scheme. (3) developing the optimization decision support system for the scheduling optimization of the digital oilfield pumping unit. In this paper, a set of digital oilfield pumping unit scheduling optimization decision support system is developed through the mixed programming of C# and MATLAB, and the production management platform of oil field production is implanted. The autonomous modeling, intelligent optimization and independent decision of the machine production system are realized.

【學位授予單位】:西安石油大學
【學位級別】:碩士
【學位授予年份】:2016
【分類號】:TE35

【相似文獻】

相關期刊論文 前10條

1 呂軍愛;李慧霞;易建鋒;張麗霞;張須昌;張體田;郭亞強;;提高文衛(wèi)馬油田機采系統(tǒng)效率的措施[J];油氣田地面工程;2008年12期

2 姚新玲;汪景林;潘國輝;康成瑞;袁荔;丁燕;;沙埝油田機采系統(tǒng)效率的研究與應用[J];石油化工應用;2009年01期

3 王鳳欣;;臨盤油田臨東區(qū)提高機采系統(tǒng)效率做法及效果[J];內(nèi)蒙古石油化工;2009年03期

4 羅志鵬;王敏;周梅;;提高機采系統(tǒng)效率優(yōu)化技術及其應用[J];遼寧化工;2011年11期

5 王剛;陳鑫;陳慶;;提高老油田機采系統(tǒng)效率的方法探索[J];中國高新技術企業(yè);2012年17期

6 劉景峰;;提高機采系統(tǒng)效率優(yōu)化水平的研究[J];中國石油和化工標準與質(zhì)量;2012年10期

7 趙海權;孫偉;于丹丹;;乾安采油廠機采系統(tǒng)的優(yōu)化與應用[J];石油石化節(jié)能;2013年04期

8 王業(yè)開;;大慶油田機采系統(tǒng)能效對標方法探討[J];石油石化節(jié)能;2013年07期

9 周楊帆;唐凡;張巖;;超低滲油藏機采系統(tǒng)效率影響因素分析[J];長江大學學報(自科版);2013年20期

10 才松林,孫曉光;介紹一個機采系統(tǒng)監(jiān)測抽樣方案[J];石油工業(yè)技術監(jiān)督;1995年05期

相關會議論文 前2條

1 ;能耗最低機采系統(tǒng)設計軟件[A];電子信息節(jié)能技術與產(chǎn)品推廣應用專集[C];2009年

2 孫徽;;機采系統(tǒng)效率對標分析評價方法與應用[A];創(chuàng)新驅(qū)動,加快戰(zhàn)略性新興產(chǎn)業(yè)發(fā)展——吉林省第七屆科學技術學術年會論文集(上)[C];2012年

相關重要報紙文章 前10條

1 記者 張云普;大慶油田創(chuàng)新機采系統(tǒng)關鍵技術[N];中國石油報;2014年

2 鄭水平;遼河油田機采系統(tǒng)效率高[N];中國化工報;2009年

3 張伶莉;河南油田采油一廠機采系統(tǒng)效率有新提高[N];中國石化報;2010年

4 記者 劉國安邋通訊員 種占良 劉琳;大港油田機采系統(tǒng)效率大幅度提升[N];中國石油報;2007年

5 特約記者 鄭水平;成功應用提高機采效率技術[N];中國石油報;2009年

6 本報記者 孫克;機采新設計大幅度提高效率[N];中國石化報;2012年

7 記者 李長開 通訊員 朱健 郭吉民;華北機采系統(tǒng)效率國內(nèi)領先[N];中國石油報;2011年

8 張志國;勝利純梁采油廠提高機采系統(tǒng)效率[N];中國石化報;2009年

9 通訊員 郝艷軍 王建國;效率高了 能耗降了[N];中國石油報;2011年

10 本報記者 郭影 本報特約記者 尚健 李冬飛;飛躍:從8%到21%[N];中國石油報;2003年

相關碩士學位論文 前4條

1 王坎;油田機采過程高精度建模與生產(chǎn)優(yōu)化應用研究[D];西安石油大學;2016年

2 劉福林;吉林油田提高機采系統(tǒng)效率技術研究[D];東北石油大學;2010年

3 薛國鋒;吉林油田機采系統(tǒng)節(jié)能降耗技術研究[D];東北石油大學;2011年

4 路殿斌;J油田機采系統(tǒng)節(jié)能改造項目后評價[D];吉林大學;2012年

,

本文編號:1821304

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/shiyounenyuanlunwen/1821304.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權申明:資料由用戶5a2ba***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com