油田機(jī)采過程高精度建模與生產(chǎn)優(yōu)化應(yīng)用研究
本文選題:機(jī)采過程 + 無跡粒子濾波; 參考:《西安石油大學(xué)》2016年碩士論文
【摘要】:油田是產(chǎn)能大戶,也是耗能大戶。機(jī)械采油是油田主要耗能方式,但其效率普遍不足30%,若每臺(tái)采油設(shè)備節(jié)省一點(diǎn)能耗,則效益驚人。如何進(jìn)一步提升抽油機(jī)井采油技術(shù)和管理水平成為油田普遍關(guān)心和亟待解決的關(guān)鍵問題。數(shù)字化油田的發(fā)展使井上井下布置了大量檢測(cè)裝置,記錄了豐富詳實(shí)的工況參數(shù)與產(chǎn)量、能耗數(shù)據(jù),這意味可由數(shù)據(jù)挖掘技術(shù),從大量生產(chǎn)數(shù)據(jù)中挖掘采油工藝潛在規(guī)律,并用數(shù)學(xué)模型描述;再通過智能優(yōu)化技術(shù)從獲取的工藝規(guī)律中尋找最佳的生產(chǎn)參數(shù),以使得機(jī)采系統(tǒng)實(shí)時(shí)保持最佳運(yùn)行狀態(tài),實(shí)現(xiàn)節(jié)能增效。為此,本文針對(duì)油田機(jī)采系統(tǒng)數(shù)據(jù)挖掘技術(shù)和生產(chǎn)參數(shù)智能優(yōu)化技術(shù)的關(guān)鍵科學(xué)問題展開深入研究,以油田機(jī)采系統(tǒng)為研究對(duì)象,通過理論研究、仿真實(shí)驗(yàn)及軟件開發(fā)促進(jìn)油田機(jī)采系統(tǒng)實(shí)現(xiàn)自主建模、智能優(yōu)化和自動(dòng)決策,具體包括以下內(nèi)容:(1)提出基于無跡粒子濾波神經(jīng)網(wǎng)絡(luò)(UPFNN)的油田機(jī)采系統(tǒng)動(dòng)態(tài)演化建模方法。建立精準(zhǔn)的機(jī)采工藝模型是實(shí)現(xiàn)生產(chǎn)優(yōu)化的前提。由于機(jī)采系統(tǒng)受機(jī)械、地層、人為等不確定因素影響,難以準(zhǔn)確掌握其生產(chǎn)參數(shù)、環(huán)境變量與系統(tǒng)性能之間的變化關(guān)系,為此本文提出利用無跡粒子濾波實(shí)時(shí)更新神經(jīng)網(wǎng)絡(luò)的權(quán)值和閾值,建立基于無跡粒子濾波神經(jīng)網(wǎng)絡(luò)子空間逼近的機(jī)采系統(tǒng)非線性動(dòng)態(tài)演化模型。該方法利用無跡卡爾曼濾波對(duì)粒子進(jìn)行估計(jì),產(chǎn)生重要性密度,并更新粒子,以提高提高粒子濾波精度,從而改善神經(jīng)網(wǎng)絡(luò)建模精度。(2)提出基于偏好多目標(biāo)優(yōu)化的油田機(jī)采過程生產(chǎn)參數(shù)優(yōu)化方法。油田為實(shí)現(xiàn)油藏的科學(xué)、合理化開采,通常需要根據(jù)油藏分布從全局上設(shè)計(jì)出各采油區(qū)在一段時(shí)間內(nèi)的開采量(即給定生產(chǎn)制度)。因此,機(jī)采系統(tǒng)優(yōu)化不能以采油量最大和用能最低為目標(biāo),而應(yīng)該以采油量接近某一給定值和用能最低作為優(yōu)化目標(biāo)。此外,油田機(jī)采系統(tǒng)生產(chǎn)優(yōu)化是在各種約束條件下求取目標(biāo)函數(shù)的最優(yōu)值,屬于復(fù)雜的非線性優(yōu)化問題,應(yīng)用傳統(tǒng)優(yōu)化理論往往遇到困難。帶精英策略的非支配排序遺傳算法通過計(jì)算個(gè)體之間的擁擠度來回避共享參數(shù)指定問題,并采用精英策略保存父代種群的優(yōu)秀個(gè)體,可實(shí)現(xiàn)多目標(biāo)并行優(yōu)化。這使得其在處理工業(yè)過程問題復(fù)雜、高維、難以解析得到的優(yōu)化模型時(shí)比傳統(tǒng)優(yōu)化方法更具優(yōu)勢(shì)。為此,本文首先結(jié)合無跡粒子濾波神經(jīng)網(wǎng)絡(luò)建立的機(jī)采過程模型和面向生產(chǎn)制度的偏好函數(shù),構(gòu)建偏好多目標(biāo)優(yōu)化模型,然后采用帶精英策略的非支配排序遺傳算法求解生產(chǎn)參數(shù)的Pareto解集,再通過有序加權(quán)獲得Pareto解集上每個(gè)方案的綜合評(píng)價(jià),最終獲得最佳方案。(3)開發(fā)數(shù)字化油田抽油機(jī)群調(diào)度優(yōu)化決策支撐系統(tǒng)。為實(shí)現(xiàn)理論指導(dǎo)實(shí)際生產(chǎn),本文將上述理論研究通過C#與MATLAB混合編程方式開發(fā)出一套數(shù)字化油田抽油機(jī)群調(diào)度優(yōu)化決策支撐系統(tǒng),并植入油田機(jī)采生產(chǎn)管理平臺(tái),實(shí)現(xiàn)了機(jī)采系統(tǒng)的自主建模、智能優(yōu)化和自主決策。
[Abstract]:Oil field is a large capacity and a big energy consumer. Mechanical oil production is the main energy consumption mode of oil field, but its efficiency is generally less than 30%. If each oil production equipment saves a little energy consumption, the benefit is astonishing. How to further improve the oil extraction technology and management level of pumping well becomes the key problem of common concern and urgent solution in the oilfield. A large number of detection devices are arranged in well on the well, and abundant and detailed working condition parameters and output and energy consumption data are recorded. This means that data mining technology can be used to excavate the potential law of oil production process from a large number of production data and describe it with mathematical model, and then the best production is found from the process rules obtained by intelligent optimization technology. In order to keep the optimal operating state of the mechanical production system in real time and achieve energy efficiency and increase efficiency, this paper studies the key scientific problems of the data mining technology of oil field mining system and the intelligent optimization technology of production parameters, and takes the oil field mining system as the research object, and promotes oil through theoretical research, simulation experiment and software development. The field machine mining system realizes independent modeling, intelligent optimization and automatic decision making, which includes the following contents: (1) a dynamic evolution modeling method based on the Untraced particle filter neural network (UPFNN) is proposed for the dynamic evolution of the oil field production system. The establishment of a precise process model is the prerequisite for the production optimization. With the influence of certain factors, it is difficult to accurately grasp the relation between the production parameters and the changes of the environment variables and the system performance. Therefore, this paper proposes to use the non trace particle filter to update the weights and thresholds of the neural network in real time and establish the nonlinear dynamic evolution model of the machine mining system based on the subspace approximation of the Untraced particle filter neural network. The non trace Calman filter is used to estimate the particle, generate the importance density, and update the particle to improve the precision of the particle filtering and improve the precision of the neural network modeling. (2) the optimization method of the production parameters of the oil field production process based on a lot of target optimization is proposed. The distribution of oil reservoirs is designed for a period of time (the given production system) in a period of time. Therefore, the optimization of the production system can not be aimed at the maximum oil production and the lowest energy use, but the production capacity should be close to a given value and the lowest energy use as the optimization target. The optimal value of the objective function under the constraint condition is a complex nonlinear optimization problem. It is difficult to apply the traditional optimization theory. The non dominated sorting genetic algorithm with the elite strategy avoids the shared parameter assignment problem by calculating the crowding degree among individuals, and uses the elite strategy to preserve the outstanding individuals of the parent population. Multi objective parallel optimization is realized. This makes it more advantageous than the traditional optimization method when dealing with the complicated industrial process problem, high dimension and difficult to parse. For this reason, this paper first combines the process model of the non trace particle filter neural network and the preference function facing the production system, and constructs a lot of objective optimization. The model, then using the non dominated sorting genetic algorithm with elite strategy to solve the Pareto solution set of the production parameters, and then through the ordered weighting to obtain the comprehensive evaluation of each scheme on the Pareto solution set, and finally get the best scheme. (3) developing the optimization decision support system for the scheduling optimization of the digital oilfield pumping unit. In this paper, a set of digital oilfield pumping unit scheduling optimization decision support system is developed through the mixed programming of C# and MATLAB, and the production management platform of oil field production is implanted. The autonomous modeling, intelligent optimization and independent decision of the machine production system are realized.
【學(xué)位授予單位】:西安石油大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:TE35
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 呂軍愛;李慧霞;易建鋒;張麗霞;張須昌;張?bào)w田;郭亞強(qiáng);;提高文衛(wèi)馬油田機(jī)采系統(tǒng)效率的措施[J];油氣田地面工程;2008年12期
2 姚新玲;汪景林;潘國(guó)輝;康成瑞;袁荔;丁燕;;沙埝油田機(jī)采系統(tǒng)效率的研究與應(yīng)用[J];石油化工應(yīng)用;2009年01期
3 王鳳欣;;臨盤油田臨東區(qū)提高機(jī)采系統(tǒng)效率做法及效果[J];內(nèi)蒙古石油化工;2009年03期
4 羅志鵬;王敏;周梅;;提高機(jī)采系統(tǒng)效率優(yōu)化技術(shù)及其應(yīng)用[J];遼寧化工;2011年11期
5 王剛;陳鑫;陳慶;;提高老油田機(jī)采系統(tǒng)效率的方法探索[J];中國(guó)高新技術(shù)企業(yè);2012年17期
6 劉景峰;;提高機(jī)采系統(tǒng)效率優(yōu)化水平的研究[J];中國(guó)石油和化工標(biāo)準(zhǔn)與質(zhì)量;2012年10期
7 趙海權(quán);孫偉;于丹丹;;乾安采油廠機(jī)采系統(tǒng)的優(yōu)化與應(yīng)用[J];石油石化節(jié)能;2013年04期
8 王業(yè)開;;大慶油田機(jī)采系統(tǒng)能效對(duì)標(biāo)方法探討[J];石油石化節(jié)能;2013年07期
9 周楊帆;唐凡;張巖;;超低滲油藏機(jī)采系統(tǒng)效率影響因素分析[J];長(zhǎng)江大學(xué)學(xué)報(bào)(自科版);2013年20期
10 才松林,孫曉光;介紹一個(gè)機(jī)采系統(tǒng)監(jiān)測(cè)抽樣方案[J];石油工業(yè)技術(shù)監(jiān)督;1995年05期
相關(guān)會(huì)議論文 前2條
1 ;能耗最低機(jī)采系統(tǒng)設(shè)計(jì)軟件[A];電子信息節(jié)能技術(shù)與產(chǎn)品推廣應(yīng)用專集[C];2009年
2 孫徽;;機(jī)采系統(tǒng)效率對(duì)標(biāo)分析評(píng)價(jià)方法與應(yīng)用[A];創(chuàng)新驅(qū)動(dòng),加快戰(zhàn)略性新興產(chǎn)業(yè)發(fā)展——吉林省第七屆科學(xué)技術(shù)學(xué)術(shù)年會(huì)論文集(上)[C];2012年
相關(guān)重要報(bào)紙文章 前10條
1 記者 張?jiān)破?大慶油田創(chuàng)新機(jī)采系統(tǒng)關(guān)鍵技術(shù)[N];中國(guó)石油報(bào);2014年
2 鄭水平;遼河油田機(jī)采系統(tǒng)效率高[N];中國(guó)化工報(bào);2009年
3 張伶莉;河南油田采油一廠機(jī)采系統(tǒng)效率有新提高[N];中國(guó)石化報(bào);2010年
4 記者 劉國(guó)安邋通訊員 種占良 劉琳;大港油田機(jī)采系統(tǒng)效率大幅度提升[N];中國(guó)石油報(bào);2007年
5 特約記者 鄭水平;成功應(yīng)用提高機(jī)采效率技術(shù)[N];中國(guó)石油報(bào);2009年
6 本報(bào)記者 孫克;機(jī)采新設(shè)計(jì)大幅度提高效率[N];中國(guó)石化報(bào);2012年
7 記者 李長(zhǎng)開 通訊員 朱健 郭吉民;華北機(jī)采系統(tǒng)效率國(guó)內(nèi)領(lǐng)先[N];中國(guó)石油報(bào);2011年
8 張志國(guó);勝利純梁采油廠提高機(jī)采系統(tǒng)效率[N];中國(guó)石化報(bào);2009年
9 通訊員 郝艷軍 王建國(guó);效率高了 能耗降了[N];中國(guó)石油報(bào);2011年
10 本報(bào)記者 郭影 本報(bào)特約記者 尚健 李冬飛;飛躍:從8%到21%[N];中國(guó)石油報(bào);2003年
相關(guān)碩士學(xué)位論文 前4條
1 王坎;油田機(jī)采過程高精度建模與生產(chǎn)優(yōu)化應(yīng)用研究[D];西安石油大學(xué);2016年
2 劉福林;吉林油田提高機(jī)采系統(tǒng)效率技術(shù)研究[D];東北石油大學(xué);2010年
3 薛國(guó)鋒;吉林油田機(jī)采系統(tǒng)節(jié)能降耗技術(shù)研究[D];東北石油大學(xué);2011年
4 路殿斌;J油田機(jī)采系統(tǒng)節(jié)能改造項(xiàng)目后評(píng)價(jià)[D];吉林大學(xué);2012年
,本文編號(hào):1821304
本文鏈接:http://sikaile.net/kejilunwen/shiyounenyuanlunwen/1821304.html