小型天然氣裝置凈化及液化流程模擬與優(yōu)化
發(fā)布時間:2018-04-27 07:27
本文選題:天然氣 + 凈化流程; 參考:《大連理工大學(xué)》2015年碩士論文
【摘要】:當(dāng)前,我國能源結(jié)構(gòu)嚴(yán)重依賴于傳統(tǒng)化石能源,由此面臨著原料成本居高不下和溫室氣體減排難等困境。為促進(jìn)能源供給的多樣化、低碳化和自主化,我國加大了天然氣田的開發(fā)。本文主要針對小型天然氣田的凈化和液化工藝技術(shù)進(jìn)行了研究探討。論文首先介紹了天然氣凈化和液化技術(shù)的研究進(jìn)展,重點介紹了醇胺法脫酸工藝和三甘醇法脫水工藝。同時,對目前主要的液化工藝的工作原理和應(yīng)用特點進(jìn)行了闡述和對比分析,并選擇了單混合制冷劑液化流程作為本文重點研究對象。針對凈化過程,在HYSYS流程模擬軟件中分別建立MEA法、DEA法和MDEA法三種典型天然氣脫酸工藝穩(wěn)態(tài)模型,并從凈化效果和能耗等方面對三種工藝進(jìn)行了系統(tǒng)分析,得出DEA法更適合用于天然氣脫酸工藝。同時針對天然氣脫水工藝建立了TEG法穩(wěn)態(tài)模型。由于DEA法脫酸工藝和TEG法脫水工藝存在著耦合關(guān)系,單獨使用模擬軟件無法給出最優(yōu)操作條件,本文引入層次分析對凈化工藝進(jìn)行多目標(biāo)綜合評價,最終確定最優(yōu)的凈化組合方案。針對液化過程,首先分析了不同混合制冷劑組分對系統(tǒng)能耗的影響,并結(jié)合相圖對混合制冷劑組分進(jìn)行了優(yōu)化選擇;其次在流程模擬軟件中建立了改進(jìn)的二級混合制冷劑穩(wěn)態(tài)模型,并基于模擬軟件HYSYS和優(yōu)化工具M(jìn)ATLAB的數(shù)據(jù)接口,建立了以系統(tǒng)總能耗最低為目標(biāo)的優(yōu)化模型,并利用遺傳算法對系統(tǒng)進(jìn)行求解。最后,在優(yōu)化模型的基礎(chǔ)上,系統(tǒng)地分析了各優(yōu)化變量對能耗和多流股換熱器最小傳熱溫差的影響,并結(jié)合系統(tǒng)的熱力學(xué)分析給出流程進(jìn)一步改進(jìn)的方向。
[Abstract]:At present, the energy structure of our country relies heavily on the traditional fossil energy, thus facing the dilemma of high cost of raw materials and difficulty in reducing greenhouse gas emissions. In order to promote the diversification of energy supply, low-carbonization and autonomy, China has increased the development of natural gas fields. In this paper, the purification and liquefaction technology of small gas fields are studied. In this paper, the research progress of natural gas purification and liquefaction technology is introduced, with emphasis on alcohol-amine deacidification process and triethylene alcohol dehydration process. At the same time, the working principle and application characteristics of the main liquefaction process are expounded and compared, and the single mixed refrigerant liquefaction process is selected as the main research object in this paper. Aiming at the purification process, the steady-state models of three typical natural gas deacidification processes, MEA method and MDEA method, are established in the HYSYS process simulation software, and the three processes are systematically analyzed from the aspects of purification effect and energy consumption. It is concluded that DEA method is more suitable for natural gas deacidification process. At the same time, the steady-state model of TEG method is established for natural gas dehydration process. Because of the coupling relationship between the DEA deacidification process and the TEG dehydration process, the optimal operating conditions can not be obtained by using the simulation software alone. In this paper, the multi-objective comprehensive evaluation of the purification process is carried out with the introduction of the analytic hierarchy process (AHP). Finally, the optimal purification combination scheme is determined. According to the liquefaction process, the influence of different refrigerant components on the energy consumption of the system is analyzed, and the composition of the mixed refrigerant is optimized according to the phase diagram. Secondly, an improved two-stage refrigerant steady-state model is established in the process simulation software. Based on the data interface between the simulation software HYSYS and the optimization tool MATLAB, the optimization model with the lowest total energy consumption is established. Genetic algorithm is used to solve the system. Finally, on the basis of the optimization model, the effects of various optimization variables on energy consumption and minimum heat transfer temperature difference of multi-flow heat exchanger are systematically analyzed, and the direction of further improvement is given based on the thermodynamic analysis of the system.
【學(xué)位授予單位】:大連理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TE96
【參考文獻(xiàn)】
相關(guān)期刊論文 前3條
1 趙杰;田旗;歐陽西安;;淺談液化天然氣技術(shù)現(xiàn)狀及應(yīng)用[J];中國石油和化工標(biāo)準(zhǔn)與質(zhì)量;2012年15期
2 祁強(qiáng);吳效楠;崔苗苗;;天然氣液化預(yù)處理的研究進(jìn)展[J];天津化工;2010年03期
3 石玉美,汪榮順,顧安忠;流程參數(shù)對C_3MRC天然氣液化流程性能的影響(下)[J];天然氣工業(yè);2004年03期
,本文編號:1809806
本文鏈接:http://sikaile.net/kejilunwen/shiyounenyuanlunwen/1809806.html
最近更新
教材專著