抽油機(jī)機(jī)械制動(dòng)機(jī)構(gòu)設(shè)計(jì)
本文選題:機(jī)械制動(dòng)機(jī)構(gòu) + 增力機(jī)構(gòu)。 參考:《沈陽理工大學(xué)》2017年碩士論文
【摘要】:電子機(jī)械制動(dòng)系統(tǒng)是利用電機(jī)驅(qū)動(dòng)制動(dòng)部件,取代傳統(tǒng)的液壓或氣動(dòng)執(zhí)行部件的制動(dòng)系統(tǒng)。液壓和氣壓制動(dòng)系統(tǒng)存在自身的缺點(diǎn),電子機(jī)械制動(dòng)系統(tǒng)擁有效率高、反應(yīng)靈敏、制動(dòng)性能穩(wěn)定等優(yōu)點(diǎn),在汽車、機(jī)械等領(lǐng)域有取代傳統(tǒng)制動(dòng)系統(tǒng)的趨勢及廣闊的應(yīng)用前景。為提高無游梁式抽油機(jī)抽油桿的換向效率,本文以電子機(jī)械制動(dòng)系統(tǒng)為研究對象,通過系統(tǒng)建模、動(dòng)力學(xué)仿真及有限元分析等方法,設(shè)計(jì)出符合無游梁式抽油機(jī)抽油桿換向功能的電子機(jī)械制動(dòng)系統(tǒng)。針對所應(yīng)用機(jī)械制動(dòng)機(jī)構(gòu)的工作環(huán)境及結(jié)構(gòu)特點(diǎn),對課題背景及國內(nèi)外電子機(jī)械制動(dòng)的發(fā)展?fàn)顩r及研究成果進(jìn)行了解。為了課題研究的方便,本文的抽油機(jī)機(jī)械制動(dòng)機(jī)構(gòu)為無游梁式抽油機(jī)樣機(jī)所設(shè)計(jì)的。本文研究的主要內(nèi)容有:(a)根據(jù)電子機(jī)械制動(dòng)系統(tǒng)的原理提出抽油機(jī)機(jī)械制動(dòng)機(jī)構(gòu)的總體設(shè)計(jì)方案,進(jìn)行總體設(shè)計(jì)。并根據(jù)設(shè)計(jì)方案,對總體設(shè)計(jì)中的主要組成機(jī)構(gòu)或部件進(jìn)行計(jì)算和研究,確定機(jī)械制動(dòng)機(jī)構(gòu)中驅(qū)動(dòng)電機(jī)、轉(zhuǎn)換機(jī)構(gòu)、增力機(jī)構(gòu)及制動(dòng)形式。(b)在確定機(jī)構(gòu)中主要組成部件后,對其進(jìn)行具體設(shè)計(jì)包括摩擦片、增力機(jī)構(gòu)、滾珠絲杠副及驅(qū)動(dòng)電機(jī),并對整個(gè)機(jī)構(gòu)的部件進(jìn)行加工裝配。(c)完成機(jī)構(gòu)設(shè)計(jì),對機(jī)構(gòu)進(jìn)行動(dòng)力學(xué)仿真,對制動(dòng)過程進(jìn)行動(dòng)力學(xué)仿真分析,獲取制動(dòng)過程中的關(guān)鍵信息如制動(dòng)盤的速度、制動(dòng)機(jī)構(gòu)的制動(dòng)力及制動(dòng)力矩等。同時(shí)對關(guān)鍵零部件根據(jù)其物理參數(shù)及功能進(jìn)行有限元分析確保其強(qiáng)度、形變、固有頻率符合機(jī)構(gòu)的要求。(d)最后對機(jī)構(gòu)進(jìn)行物理試驗(yàn),保證真實(shí)的制動(dòng)效果符合預(yù)期,并采集到的關(guān)鍵數(shù)據(jù)和理論計(jì)算進(jìn)行對比,證明機(jī)構(gòu)設(shè)計(jì)的正確合理。
[Abstract]:Electromechanical braking system is a braking system which uses motor to drive brake parts instead of traditional hydraulic or pneumatic parts.The hydraulic and pneumatic braking systems have their own shortcomings. The electro-mechanical braking system has the advantages of high efficiency, sensitive response and stable braking performance. It has the tendency to replace the traditional braking system and has a broad application prospect in the fields of automobile, machinery and so on.In order to improve the commutative efficiency of sucker rod in beam free pumping unit, this paper takes the electro-mechanical braking system as the research object, through the methods of system modeling, dynamic simulation and finite element analysis, etc.An electronic-mechanical braking system is designed which accords with the reversing function of sucker rod in non-beam pumping unit.In view of the working environment and structural characteristics of the applied mechanical brake mechanism, the background of the subject, the development situation and research results of the electronic mechanical brake at home and abroad are discussed.For the convenience of the research, the mechanical brake mechanism of the pumping unit is designed by the prototype of the pumping unit without beam.The main content of this paper is: (1) according to the principle of electro-mechanical braking system, the general design scheme of mechanical braking mechanism of pumping unit is put forward and the overall design is carried out.According to the design scheme, the main components or components in the overall design are calculated and studied. After determining the main components of the mechanism, the driving motor, the conversion mechanism, the force booster mechanism and the braking form in the mechanical braking mechanism are determined.The specific design includes friction plate, force booster mechanism, ball screw pair and drive motor. The mechanism is designed by machining and assembling the parts of the whole mechanism, and the dynamic simulation of the mechanism is carried out.The dynamic simulation analysis of the braking process is carried out to obtain the key information such as the speed of the brake disc, the braking force and the braking torque of the brake mechanism.At the same time, according to the physical parameters and functions of the key parts, finite element analysis is carried out to ensure that the strength, deformation and natural frequency of the key parts meet the requirements of the mechanism. Finally, the physical test of the mechanism is carried out to ensure that the real braking effect is in line with the expectation.The key data collected are compared with the theoretical calculation to prove that the design of the mechanism is correct and reasonable.
【學(xué)位授予單位】:沈陽理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TE933.1
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 漢世成;;基于ANSYS的制動(dòng)盤模態(tài)分析[J];機(jī)械研究與應(yīng)用;2014年03期
2 金智林;趙曰賀;趙峰;陳亮陪;;汽車電控機(jī)械制動(dòng)系統(tǒng)設(shè)計(jì)及性能分析[J];機(jī)械設(shè)計(jì)與制造;2014年06期
3 卜雷;;試論汽車線控制動(dòng)技術(shù)及其發(fā)展[J];湖南農(nóng)機(jī);2014年01期
4 龔賢武;張麗君;馬建;汪貴平;;基于制動(dòng)穩(wěn)定性要求的電動(dòng)汽車制動(dòng)力分配[J];長安大學(xué)學(xué)報(bào)(自然科學(xué)版);2014年01期
5 褚志剛;葉方標(biāo);張昌福;;旋轉(zhuǎn)對稱結(jié)構(gòu)制動(dòng)盤模態(tài)相關(guān)性分析[J];振動(dòng)與沖擊;2013年20期
6 宗長富;李剛;鄭宏宇;何磊;張澤星;;線控汽車底盤控制技術(shù)研究進(jìn)展及展望[J];中國公路學(xué)報(bào);2013年02期
7 張國秋;王文璇;;均勻試驗(yàn)設(shè)計(jì)方法應(yīng)用綜述[J];數(shù)理統(tǒng)計(jì)與管理;2013年01期
8 程敬麗;鄭敏;樓建晴;;常見的試驗(yàn)優(yōu)化設(shè)計(jì)方法對比[J];實(shí)驗(yàn)室研究與探索;2012年07期
9 李運(yùn)初;王魁;;基于ADAMS的含運(yùn)動(dòng)副間隙破碎機(jī)動(dòng)力學(xué)仿真分析[J];機(jī)械傳動(dòng);2011年10期
10 羅天洪;張會莉;羅文軍;尹信賢;賈永清;;基于ADAMS的楔式制動(dòng)器摩擦特性研究[J];重慶交通大學(xué)學(xué)報(bào)(自然科學(xué)版);2011年03期
相關(guān)博士學(xué)位論文 前2條
1 門金來;內(nèi)模控制在汽車穩(wěn)定控制中的應(yīng)用研究[D];上海交通大學(xué);2012年
2 王庭義;鼓式制動(dòng)器關(guān)鍵技術(shù)研究[D];長安大學(xué);2011年
相關(guān)碩士學(xué)位論文 前6條
1 盧甲華;汽車EMB系統(tǒng)性能分析與優(yōu)化[D];重慶大學(xué);2015年
2 左斌;汽車電子機(jī)械制動(dòng)(EMB)控制系統(tǒng)關(guān)鍵技術(shù)研究[D];浙江大學(xué);2014年
3 孫春輝;新型無游梁機(jī)械換向抽油機(jī)系統(tǒng)研究[D];沈陽理工大學(xué);2014年
4 邵作業(yè);基于電子液壓制動(dòng)系統(tǒng)的車輛穩(wěn)定性控制算法研究[D];吉林大學(xué);2009年
5 董鵬;盤式制動(dòng)器及其與整車匹配的研究[D];武漢理工大學(xué);2007年
6 曲萬達(dá);汽車線控制動(dòng)之硬件系統(tǒng)研究[D];武漢理工大學(xué);2006年
,本文編號:1769379
本文鏈接:http://sikaile.net/kejilunwen/shiyounenyuanlunwen/1769379.html