海洋絞車自動排纜系統(tǒng)建模與仿真研究
本文選題:海洋絞車 切入點:排纜 出處:《湖南科技大學》2015年碩士論文
【摘要】:深海絞車作為水面支持系統(tǒng)中關(guān)鍵機械裝備,是深海遙控潛水器系統(tǒng)、深海拖曳探測系統(tǒng)、海洋管道鋪設(shè)、及海底取樣設(shè)備等重型海洋裝備的重要組成部分,主要用于水下設(shè)備的收放作業(yè)。排纜機構(gòu)是保證絞車實現(xiàn)整齊有序自動收放纜繩的基礎(chǔ),如果絞車在收放纜繩時排纜不好,易出現(xiàn)纏繞不均、亂繩、咬繩現(xiàn)象,會導致纜繩間的嚴重擠壓和摩擦,加劇纜繩的非正常磨損,直接影響纜繩使用壽命和作業(yè)安全。傳統(tǒng)上,為了解決排纜的問題,通常采用機械式排纜器,但是機械式排纜器的結(jié)構(gòu)和傳動機構(gòu)復雜,且受機械傳動機構(gòu)的限制,排纜的速度不宜過大。本文以海洋絞車排纜機構(gòu)為研究對象,對無軸排纜控制系統(tǒng)進行了理論建模、仿真分析和相應的應用實踐。隨著變頻技術(shù)和伺服控制技術(shù)的迅速進步,常規(guī)的機械傳動模式正在逐漸向無軸傳動模式發(fā)展,本課題依托實際工程項目需求,以大功率伺服電機為執(zhí)行動力機構(gòu),通過研究伺服排纜系統(tǒng)的機械結(jié)構(gòu)和控制原理,結(jié)合無軸同步傳動的最新研究成果,基于矢量變換建立了永磁同步電機的動態(tài)近似線性方程,并在其基礎(chǔ)上參考相關(guān)文獻資料建立了伺服驅(qū)動器的電流環(huán)和速度環(huán),并且基于工程經(jīng)驗對其參數(shù)進行了整定,將整個傳動系統(tǒng)中的剛度折算到絲桿副上,建立了排纜系統(tǒng)的機械傳動機構(gòu)的動力學數(shù)學模型,在分析排纜過程中機械和電氣各環(huán)節(jié)數(shù)學模型的基礎(chǔ)上,基于Simulink軟件搭建了排纜伺服同步傳動系統(tǒng)的計算機仿真模型,對系統(tǒng)動態(tài)響應特性進行了分析并且得出相關(guān)因素對系統(tǒng)響應指標的影響,并對排纜控制器速度外環(huán)進行了參數(shù)整定和仿真實驗,為實際系統(tǒng)設(shè)計和調(diào)試提供了一定的參考價值和理論基礎(chǔ)。在理論仿真的基礎(chǔ)之上,進行了排纜控制器的應用實踐。海洋絞車排纜系統(tǒng)總體上包括上位機監(jiān)控系統(tǒng)、嵌入式控制系統(tǒng)、伺服驅(qū)動器、伺服電機和機械傳動系統(tǒng)。依據(jù)排纜的工作原理可知卷筒的實際運動狀態(tài)與排纜行走機構(gòu)的運動狀態(tài)有一一對應的關(guān)系,排纜控制系統(tǒng)的輸入為卷筒運動狀態(tài)相對應的排纜機構(gòu)速度給定值,輸出為排纜行走機構(gòu)的實際速度值,整個系統(tǒng)采用閉環(huán)控制,控制單元使用STM32和FPGA相結(jié)合的方案,考慮到STM32處理器中斷延時短、中斷能力強、以及故障處理方便以及FPGA并行運算的優(yōu)點,STM32作為主處理器基于μC/OS-II實時操作系統(tǒng),保障了排纜系統(tǒng)的各個任務之間的通信、資源的調(diào)配和高穩(wěn)定性,FPGA作為協(xié)處理器,在其基礎(chǔ)上實現(xiàn)了實現(xiàn)了數(shù)據(jù)的譯碼、FIFO和加減速模塊等功能,STM32+FPGA的硬件方案優(yōu)化了系統(tǒng)的實現(xiàn)結(jié)構(gòu),FPGA的高速處理能力保證了排纜控制器的高速、高精度、高實時性的處理能力特性。
[Abstract]:As the key mechanical equipment in the surface support system, the deep-sea winch is an important part of the deep-sea remote control submersible system, the deep-sea towing detection system, the laying of the ocean pipeline, and the submarine sampling equipment. The cable discharge mechanism is the basis for ensuring the winch to realize orderly and automatic cable retracement. If the winch is not good at discharging the cable, it is easy to appear the phenomenon of unevenness of winding, disorder of rope and biting of rope. It will lead to serious squeezing and friction between cables, aggravate the abnormal wear and tear of the cables, and directly affect the service life of the cables and the safety of their operation. Traditionally, in order to solve the problem of cable discharge, mechanical cable drainers are usually used. However, the structure and transmission mechanism of mechanical cable discharging device are complex, and the speed of cable discharge should not be too large due to the limitation of mechanical transmission mechanism. In this paper, the control system without shaft row cable is theoretically modeled by taking the cable discharge mechanism of offshore winch as the research object. With the rapid progress of frequency conversion technology and servo control technology, the conventional mechanical transmission mode is gradually developing to shaftless transmission mode. By studying the mechanical structure and control principle of the servo cable discharging system, taking the high power servo motor as the executive power mechanism, combining with the latest research results of the axis-free synchronous drive, Based on vector transformation, the dynamic approximate linear equations of PMSM are established, and the current loop and speed loop of the servo driver are established based on the relevant literature. The parameters of the PMSM are adjusted based on the engineering experience. The stiffness of the whole transmission system is converted to the wire rod pair, and the dynamic mathematical model of the mechanical transmission mechanism of the cable discharging system is established. Based on the analysis of the mathematical models of the mechanical and electrical links in the process of cable discharge, The computer simulation model of cable servo synchronous drive system is built based on Simulink software. The dynamic response characteristics of the system are analyzed and the influence of relevant factors on the system response index is obtained. The parameter tuning and simulation experiments of the speed outer loop of the cable discharge controller are carried out, which provide a certain reference value and theoretical basis for the design and debugging of the actual system. The cable discharging system of the ocean winch includes the upper computer monitoring system, the embedded control system, the servo driver, and so on. Servo motor and mechanical transmission system. According to the working principle of cable discharge, it is known that the actual motion state of the reel has a one-to-one correspondence with the motion state of the running mechanism. The input of the cable discharge control system is the given value of the speed of the cable discharging mechanism corresponding to the motion state of the reel, and the output is the actual speed value of the cable discharging and walking mechanism. The whole system adopts closed loop control, and the control unit uses the scheme of combining STM32 and FPGA. Considering the short interrupt delay, strong interrupt capability of STM32 processor, and the advantages of convenient fault processing and FPGA parallel operation, STM32 as the main processor is based on 渭 C/OS-II real-time operating system, which ensures the communication between the various tasks of the cabling system, Resource allocation and high stability FPGA as coprocessors, The hardware scheme of STM32 FPGA is realized, such as decode FIFO and acceleration / deceleration module, etc. The implementation structure of the system is optimized. The high speed processing ability of FPGA ensures the high speed and high precision of the cable discharge controller. High real-time processing capability.
【學位授予單位】:湖南科技大學
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:TE95
【相似文獻】
相關(guān)期刊論文 前10條
1 程有龍;劉棟;張東升;馮斌;盛曉超;;精密伺服進給平臺控制系統(tǒng)設(shè)計[J];組合機床與自動化加工技術(shù);2011年06期
2 華茂發(fā);基于虛位移原理的伺服進給電機轉(zhuǎn)矩選配方法[J];機床與液壓;2003年06期
3 周保牛;黃俊桂;;具有伺服進給功能的數(shù)控主傳動系統(tǒng)的研制[J];機床與液壓;2009年10期
4 孫名佳;曹文智;馬曉波;;基于Isight的機床伺服參數(shù)優(yōu)化技術(shù)研究[J];制造業(yè)自動化;2013年16期
5 楊永生;;伺服進給系統(tǒng)仿真中的加速度模型辨識[J];自動化應用;2011年04期
6 黃琳莉;陳亭志;;數(shù)控機床伺服進給驅(qū)動系統(tǒng)的電氣故障排查與對策[J];武漢職業(yè)技術(shù)學院學報;2013年03期
7 沈洪;李洪洲;;電火花三座標同時伺服平動頭的研究[J];電加工;1983年01期
8 王恩濟;朱寧;吳國興;;SPOC系統(tǒng)——計算機對電源,伺服,多軌跡自動增量平動頭的優(yōu)控[J];電加工;1989年01期
9 季曉明;;數(shù)控機床伺服進給系統(tǒng)常見故障及典型案例分析[J];現(xiàn)代商貿(mào)工業(yè);2008年12期
10 王克錫;;英國AGMASPARK公司的新品種[J];電加工;1980年03期
相關(guān)會議論文 前1條
1 耿春明;趙萬生;劉華;趙家齊;劉晉春;;精密電火花磨削伺服進給策略的研究[A];2001年中國機械工程學會年會暨第九屆全國特種加工學術(shù)年會論文集[C];2001年
相關(guān)碩士學位論文 前10條
1 易武志;海洋絞車自動排纜系統(tǒng)建模與仿真研究[D];湖南科技大學;2015年
2 程超;伺服刀架頻率特性分析與測試[D];國防科學技術(shù)大學;2009年
3 段緯然;復雜面形/結(jié)構(gòu)零件車削加工關(guān)鍵技術(shù)研究[D];國防科學技術(shù)大學;2007年
4 曹永峰;數(shù)控機床伺服進給CAD系統(tǒng)的研究與開發(fā)[D];西南交通大學;2002年
5 畢思捷;伺服模擬器的研究與開發(fā)[D];中國科學院研究生院(沈陽計算技術(shù)研究所);2008年
6 王建明;數(shù)控機床伺服特性對機床精度的影響研究[D];西南交通大學;2011年
7 鄭向周;基于永磁無刷直流電機的數(shù)控傳動伺服系統(tǒng)建模與仿真研究[D];太原理工大學;2010年
8 康亞彪;數(shù)控機床伺服系統(tǒng)動態(tài)仿真及參數(shù)優(yōu)化[D];大連理工大學;2010年
9 藍益鵬;雙位置環(huán)直線伺服同步系統(tǒng)魯棒控制[D];沈陽工業(yè)大學;2003年
10 王劉成;數(shù)控機床進給伺服系統(tǒng)伺服參數(shù)優(yōu)化研究[D];山西大學;2013年
,本文編號:1674764
本文鏈接:http://sikaile.net/kejilunwen/shiyounenyuanlunwen/1674764.html