大修磨銑井反循環(huán)洗井裝置的設(shè)計與結(jié)構(gòu)優(yōu)化
本文選題:大修磨銑井 切入點:反循環(huán)洗井 出處:《東北石油大學(xué)》2017年碩士論文
【摘要】:隨著油氣田開發(fā)時間增長,部分油水井受套管損壞及井下地質(zhì)情況的影響,漏失嚴重,為落物魚頂上碎屑的收集打撈帶來了很大的困難。目前應(yīng)用化學(xué)藥劑暫堵的方法施工成本高、施工周期長并且對于漏失嚴重的井暫堵很難成功,最后往往導(dǎo)致修井失敗及該井可能報廢的結(jié)果。針對這種情況,油田現(xiàn)場研制出一種新型局部反循環(huán)打撈器,對漏失嚴重的井不進行暫堵作業(yè)便可收集磨銑過程中回落的砂子及碎屑。然而在實際應(yīng)用中發(fā)現(xiàn),該項新型裝置在洗井作業(yè)時存在反循環(huán)能力不足、碎屑采取率低等問題。針對井下局部反循環(huán)洗井裝置在實際應(yīng)用過程中出現(xiàn)的問題,應(yīng)用Fluent軟件對此裝置洗井作業(yè)時孔底固液兩相流場進行數(shù)值模擬研究,研究表明:液相洗井介質(zhì)在進入孔底流場在經(jīng)過兩次出水孔換向后,液相洗井介質(zhì)的壓力、流速以及湍動能耗散都較大,導(dǎo)致該裝置對孔底中部的碎屑沖洗能力不足,最終在孔底生成碎屑“死區(qū)”。針對以上數(shù)值模擬分析結(jié)果,基于人工誘發(fā)龍卷風(fēng)機理設(shè)計旋風(fēng)式反循環(huán)洗井裝置,對此裝置洗井作業(yè)時孔底氣固兩相流場進行數(shù)值模擬研究,并對裝置結(jié)構(gòu)進行改進,研究表明:在改進裝置結(jié)構(gòu)前,裝置對孔底中心部位碎屑抽吸能力良好,對孔底外圍及環(huán)空部位碎屑反循環(huán)能力不足,在增設(shè)外噴孔后能夠有效增加裝置對孔底外圍及環(huán)空部位碎屑的反循環(huán)能力,配合內(nèi)旋噴孔能夠完全將碎屑從孔底洗出。應(yīng)用數(shù)值模擬的方法,對裝置核心結(jié)構(gòu)中噴孔直徑d和噴孔角度θ這兩項主要結(jié)構(gòu)參數(shù)進行優(yōu)化,研究結(jié)果表明:隨著噴孔角度θ的增大,從孔底環(huán)空進入到裝置內(nèi)的氣體質(zhì)量流量單調(diào)遞減,且前期遞減嚴重;隨著噴孔直徑d的增大,從孔底環(huán)空進入到裝置內(nèi)的氣體質(zhì)量流量整體呈拋物線變化趨勢,在d=4mm處質(zhì)量流量最大,裝置反循環(huán)能力最強。
[Abstract]:With the development time of oil and gas field increasing, some oil and water wells are seriously lost due to casing damage and downhole geological conditions. It is very difficult to collect and salvage debris from the top of the falling fish. At present, the method of temporary plugging with chemical agent is of high construction cost, long construction period and difficult to be successfully plugged in wells with serious leakage. In the end, it often leads to the failure of workover and the result that the well may be scrapped. In view of this situation, a new type of local reverse circulation fishing device has been developed in the oil field. Sand and debris falling back during grinding and milling can be collected without temporary plugging in wells with serious leakage. However, in practical application, it is found that the new device has insufficient reverse circulation capacity in well washing operation. In view of the problems in practical application of downhole local reverse circulation well washing device, the Fluent software is used to simulate the solid-liquid two-phase flow field at the bottom of hole during well washing operation. The results show that the pressure, velocity and turbulent kinetic energy dissipation of the liquid-phase well washing medium are large after entering the bottom flow field of the hole, and the pressure, velocity and turbulent kinetic energy dissipation of the liquid-phase washing medium are all large, which leads to the lack of the flushing capacity of the debris in the middle of the hole bottom. Finally, detritus "dead zone" is formed at the bottom of the hole. Based on the results of numerical simulation and analysis above, a whirlwind reverse circulation well washing device is designed based on the mechanism of artificial tornado, and the numerical simulation of the gas-solid two-phase flow field in the hole bottom during well washing operation is carried out. The research shows that before improving the structure of the device, the device has a good suction capacity to the debris in the center of the hole bottom, and the reverse circulation ability of the detritus on the periphery of the hole bottom and the annulus part is insufficient. The anti-circulation ability of the device to the detritus around the bottom of the hole and the annulus can be increased effectively after the addition of the external jet hole, and the debris can be completely washed out from the bottom of the hole with the internal rotating hole. The numerical simulation method is used. The two main structural parameters of nozzle diameter d and nozzle angle 胃 in the core structure of the device are optimized. The results show that with the increase of the nozzle angle 胃, the gas mass flow rate from the bottom annulus to the device decreases monotonously. With the increase of the nozzle diameter d, the mass flow rate from the bottom annulus of the hole to the device showed a parabolic trend, and the mass flow rate was the largest at d=4mm, and the reverse circulation capacity of the device was the strongest.
【學(xué)位授予單位】:東北石油大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TE925.1
【參考文獻】
相關(guān)期刊論文 前10條
1 王少雷;林曉英;蘇現(xiàn)波;王懷;范超;蘇黎楠;;空氣動力洗井技術(shù)在煤層氣井中的應(yīng)用與評價[J];煤田地質(zhì)與勘探;2016年02期
2 于航;殷琨;羅永江;甘心;;內(nèi)噴孔式反循環(huán)鉆頭結(jié)構(gòu)優(yōu)化設(shè)計及CFD模擬分析[J];探礦工程(巖土鉆掘工程);2013年01期
3 黃勇;殷琨;朱麗紅;;風(fēng)動潛孔錘反循環(huán)鉆井最小注氣量模型[J];中國石油大學(xué)學(xué)報(自然科學(xué)版);2011年05期
4 祝效華;劉少胡;童華;;氣體鉆井鉆桿沖蝕規(guī)律研究[J];石油學(xué)報;2010年06期
5 李士斌;陳曉華;唐玉龍;趙春賀;;空氣鉆井最小注氣量的計算及其影響參數(shù)[J];科學(xué)技術(shù)與工程;2009年22期
6 宋洵成;管志川;陳紹維;;斜井巖屑運移臨界環(huán)空流速力學(xué)模型[J];中國石油大學(xué)學(xué)報(自然科學(xué)版);2009年01期
7 李六全;;陜西黃龍鋪—河南欒川地區(qū)鉬礦床地質(zhì)特征及控礦因素[J];陜西地質(zhì);2008年02期
8 王忠生;廖兵;;雙壁鉆桿反循環(huán)空氣鉆井循環(huán)參數(shù)的分析與計算[J];鉆采工藝;2008年03期
9 王存新;孟英峰;鄧虎;李皋;陳勇;;氣體鉆井注氣量計算方法研究進展[J];天然氣工業(yè);2006年12期
10 唐貴,雷桐,舒秋貴,孟英峰;氣體鉆井井筒與地層流動耦合分析[J];石油鉆采工藝;2005年04期
相關(guān)博士學(xué)位論文 前2條
1 黃勇;潛孔錘反循環(huán)鉆進孔底氣固兩相流場數(shù)值模擬及試驗研究[D];吉林大學(xué);2013年
2 范黎明;貫通式潛孔錘鉆頭反循環(huán)機理研究及結(jié)構(gòu)優(yōu)化[D];吉林大學(xué);2011年
相關(guān)碩士學(xué)位論文 前6條
1 杜秋影;儲油罐機械清罐高壓噴射數(shù)值模擬[D];東北石油大學(xué);2016年
2 鄭英飛;復(fù)式反循環(huán)鉆頭結(jié)構(gòu)設(shè)計與仿真分析[D];吉林大學(xué);2015年
3 趙艷嬌;旋流式反循環(huán)連續(xù)取心鉆頭結(jié)構(gòu)設(shè)計及孔底流場CFD分析[D];吉林大學(xué);2012年
4 袁海燕;提升管道系統(tǒng)固液兩相流工程應(yīng)用研究[D];湖南大學(xué);2012年
5 周文會;高壓水射流噴嘴內(nèi)外部流場的數(shù)值模擬研究[D];蘭州理工大學(xué);2008年
6 李蘅;深海采礦水力提升系統(tǒng)粗顆粒運動規(guī)律模擬研究[D];清華大學(xué);2003年
,本文編號:1668838
本文鏈接:http://sikaile.net/kejilunwen/shiyounenyuanlunwen/1668838.html