LNG泵用誘導(dǎo)輪設(shè)計(jì)及流動(dòng)分析
本文選題:誘導(dǎo)輪 切入點(diǎn):環(huán)量分布 出處:《江蘇大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:低溫液化有效地解決了天然氣輸送不便與存儲(chǔ)困難的問題,在此過程中,LNG泵成為輸送流體的關(guān)鍵工具。低溫液體的空化極大影響了機(jī)組的穩(wěn)定運(yùn)行,加裝誘導(dǎo)輪可有效地解決該問題。現(xiàn)階段的誘導(dǎo)輪設(shè)計(jì)更加依賴設(shè)計(jì)者的經(jīng)驗(yàn),同時(shí)設(shè)計(jì)過程中忽略了熱力學(xué)效應(yīng)對(duì)其性能的影響。因此,減少設(shè)計(jì)過程中對(duì)經(jīng)驗(yàn)參數(shù)的依賴性,提高誘導(dǎo)輪設(shè)計(jì)過程的可控性,探討熱力學(xué)效應(yīng)對(duì)誘導(dǎo)輪性能的影響顯得尤為重要。本文結(jié)合軸流泵相關(guān)研究,在原有設(shè)計(jì)方法基礎(chǔ)上,引入環(huán)量分布,完成誘導(dǎo)輪水力設(shè)計(jì),通過數(shù)值模擬計(jì)算,研究其內(nèi)部流動(dòng)特性和空化特性,并通過改變流體介質(zhì),探討熱力學(xué)效應(yīng)對(duì)泵性能的影響。本文研究內(nèi)容如下:1.以基本流動(dòng)方程為基礎(chǔ),根據(jù)徑向平衡方程,給出了四種不同類型環(huán)量分布規(guī)律,并推導(dǎo)出相應(yīng)的軸面速度分布,為水力設(shè)計(jì)提供理論依據(jù)。2.基于熱力學(xué)克拉珀龍-克勞修斯方程,結(jié)合空化過程中熱量轉(zhuǎn)化,推導(dǎo)出熱力學(xué)物性參數(shù)對(duì)誘導(dǎo)輪空化的影響,并分別以常溫清水和低溫LNG為工作介質(zhì),求解熱力學(xué)效應(yīng)對(duì)誘導(dǎo)輪空化的具體影響。3.在原有設(shè)計(jì)方法基礎(chǔ)上,引入非線性環(huán)量分布理論,控制不同葉高處葉片進(jìn)出口安放角,同時(shí)通過方程聯(lián)立轉(zhuǎn)化,減少設(shè)計(jì)過程中經(jīng)驗(yàn)參數(shù)的選取,將設(shè)計(jì)選取經(jīng)驗(yàn)參數(shù)轉(zhuǎn)為驗(yàn)證參數(shù),進(jìn)而完成誘導(dǎo)輪水力設(shè)計(jì)。4.采用PRO/E對(duì)設(shè)計(jì)的誘導(dǎo)輪、原誘導(dǎo)輪、離心輪和蝸殼進(jìn)行三維造型,并按照一定的軸向間距和周向時(shí)序位置進(jìn)行裝配。通過ANSYS軟件,以常溫清水為介質(zhì),進(jìn)行定常數(shù)值模擬,計(jì)算結(jié)果表明,相較于原型誘導(dǎo)輪,新型誘導(dǎo)輪葉片表面靜壓分布梯度更顯著,環(huán)量分布對(duì)泵揚(yáng)程影響不大,但對(duì)泵效率有一定的影響。5.以常溫清水為介質(zhì),對(duì)兩種模型泵進(jìn)行空化數(shù)值模擬。計(jì)算結(jié)果發(fā)現(xiàn),新型泵空化性能較原型泵有了很大的提高,通過對(duì)空化發(fā)生前后葉片表面空泡體積分?jǐn)?shù)的分析,發(fā)現(xiàn)誘導(dǎo)輪可以提高泵汽蝕性能的主要原因在于其為離心輪入口提供的富余能量,其本身空化并不會(huì)對(duì)離心輪造成影響。并通過分析誘導(dǎo)輪出口至離心輪入口過渡段空泡分布的發(fā)展規(guī)律,發(fā)現(xiàn)過渡段內(nèi)的壓力提升有效抑制了誘導(dǎo)輪空化所產(chǎn)生的空泡進(jìn)一步發(fā)展。6.用LNG替代常溫清水,對(duì)新型泵進(jìn)行空化數(shù)值模擬。計(jì)算結(jié)果表明,熱力學(xué)效應(yīng)對(duì)泵空化有一定的抑制作用,但在利用以清水介質(zhì)基礎(chǔ)上設(shè)計(jì)出的泵,在以LNG為流體介質(zhì)時(shí),泵空化性能有所下降。
[Abstract]:Cryogenic liquefaction effectively solves the problems of inconvenient transportation and storage of natural gas. In the process, LNG pump becomes a key tool for conveying fluid. Cavitation of cryogenic liquid greatly affects the stable operation of the unit. This problem can be solved effectively by adding inducer wheel. At present, the design of inducer wheel depends more on the designer's experience, and the influence of thermodynamic effect on its performance is neglected in the design process. It is very important to reduce the dependence of the experience parameters in the design process, to improve the controllability of the design process of the inducer wheel, and to discuss the influence of the thermodynamic effect on the performance of the inducer wheel. In this paper, combined with the related research of the axial flow pump, on the basis of the original design method, The hydrodynamic design of the inducer was completed by introducing the distribution of the annular volume. The internal flow and cavitation characteristics were studied by numerical simulation, and the fluid medium was changed. The effect of thermodynamic effect on pump performance is discussed. The main contents of this paper are as follows: 1. Based on the basic flow equation and the radial equilibrium equation, the distribution laws of four different types of rings are given, and the corresponding axial velocity distribution is deduced. Based on the Clipperon-Clausius equation of thermodynamics and the heat transfer during cavitation, the influence of thermodynamic physical parameters on the induced wheel cavitation is deduced. The specific effect of thermodynamic effect on induced wheel cavitation is solved by using water at room temperature and LNG at low temperature as working media respectively. Based on the original design method, the nonlinear ring distribution theory is introduced to control the blade inlet and outlet angle of different blade heights. At the same time, through simultaneous transformation of equations to reduce the selection of empirical parameters in the design process, the design selection of empirical parameters into validation parameters, and then completed the hydraulic design of the inducer. 4. Using PRO/E to design the inducer wheel, the original inducer wheel, The centrifugal wheel and volute are modeled in three dimensions and assembled according to certain axial spacing and circumferential time sequence position. The steady numerical simulation is carried out by using ANSYS software, using clear water at room temperature as the medium. The calculation results show that, compared with the prototype induction wheel, The hydrostatic pressure distribution gradient on the surface of the new inducer blade is more significant, and the ring distribution has little effect on the pump head, but it has a certain effect on the pump efficiency. 5. The cavitation numerical simulation of the two kinds of model pumps is carried out using water at room temperature as the medium. The cavitation performance of the new type pump is greatly improved than that of the prototype pump. The cavitation volume fraction of the vane surface before and after cavitation is analyzed. It is found that the main reason why the inducer can improve the cavitation performance of the pump lies in the excess energy it provides to the inlet of the centrifugal wheel. The cavitation itself does not affect the centrifugal wheel, and the cavitation distribution of the transition section from the inducer exit to the inlet of the centrifugal wheel is analyzed. It is found that the pressure rise in the transition section effectively inhibits the further development of cavitation generated by induced wheel cavitation. The cavitation numerical simulation of the new pump is carried out using LNG instead of room temperature clean water. The thermodynamic effect can inhibit the cavitation of the pump to some extent, but the cavitation performance of the pump designed on the basis of the clear water medium is decreased when LNG is used as the fluid medium.
【學(xué)位授予單位】:江蘇大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TE974.1
【相似文獻(xiàn)】
中國期刊全文數(shù)據(jù)庫 前10條
1 趙瑞;崔寶玲;朱祖超;萬忠;;高速誘導(dǎo)輪內(nèi)部流場的數(shù)值計(jì)算[J];浙江理工大學(xué)學(xué)報(bào);2010年03期
2 張海英;張際平;;高速泵誘導(dǎo)輪葉片斷裂原因分析[J];石油和化工設(shè)備;2010年10期
3 吳強(qiáng);江峰;王志強(qiáng);靖永毅;;解析泵用誘導(dǎo)輪葉片的工藝性設(shè)計(jì)及加工工藝[J];化工設(shè)備與管道;2014年01期
4 季鳳來;吳玉珍;;高性能變螺距誘導(dǎo)輪設(shè)計(jì)分析[J];化工設(shè)備與管道;2007年03期
5 舒安慶,張生,趙彥修;加裝誘導(dǎo)輪改善離心泵抗汽蝕性能[J];化工設(shè)備與管道;2003年03期
6 萬忠;崔寶玲;林慧超;陳通勵(lì);;具有前置誘導(dǎo)輪的低比轉(zhuǎn)速復(fù)合葉輪的數(shù)值模擬[J];浙江理工大學(xué)學(xué)報(bào);2011年01期
7 郭曉梅;李增芳;王鐵流;鄭齊鑾;;基于Pro/E誘導(dǎo)輪三維造型的研究與應(yīng)用[J];煤礦機(jī)械;2009年03期
8 林慧超;張玉良;陳通勵(lì);陳書;;大流量高速泵的改型設(shè)計(jì)與實(shí)驗(yàn)[J];石油化工設(shè)計(jì);2014年02期
9 蘭永強(qiáng);200PYS油漿泵誘導(dǎo)輪的鑄造生產(chǎn)[J];中國鑄造裝備與技術(shù);2003年06期
10 胡永超;張?zhí)煊?;GSB-L1高速泵故障處理及檢修質(zhì)量控制[J];化工管理;2014年18期
中國重要會(huì)議論文全文數(shù)據(jù)庫 前3條
1 孔繁余;呂毅;黃建軍;孫建;;變螺距誘導(dǎo)輪流場的數(shù)值模擬[A];農(nóng)業(yè)機(jī)械化與新農(nóng)村建設(shè)——中國農(nóng)業(yè)機(jī)械學(xué)會(huì)2006年學(xué)術(shù)年會(huì)論文集(上冊)[C];2006年
2 黃建德;;誘導(dǎo)輪泵的氣蝕特性和內(nèi)部流場的研究[A];河南省水力發(fā)電工程學(xué)會(huì)年會(huì)暨多泥沙河流水電站運(yùn)行與管理專題研討會(huì)論文集[C];2002年
3 于洪英;潘志遠(yuǎn);姜彥;;渦流高效防砂分離器研制與應(yīng)用[A];2011年石油裝備學(xué)術(shù)研討會(huì)論文專輯[C];2011年
中國博士學(xué)位論文全文數(shù)據(jù)庫 前2條
1 崔寶玲;高速誘導(dǎo)輪離心泵的理論分析與數(shù)值模擬[D];浙江大學(xué);2006年
2 郭曉梅;高速誘導(dǎo)輪離心泵抗汽蝕特性的數(shù)值計(jì)算與實(shí)驗(yàn)研究[D];浙江理工大學(xué);2013年
中國碩士學(xué)位論文全文數(shù)據(jù)庫 前10條
1 趙瑞;高速誘導(dǎo)輪離心泵的數(shù)值模擬與試驗(yàn)研究[D];浙江理工大學(xué);2010年
2 李向陽;火箭發(fā)動(dòng)機(jī)變螺距誘導(dǎo)輪預(yù)壓渦輪泵技術(shù)研究[D];西安電子科技大學(xué);2007年
3 葛書亭;帶誘導(dǎo)輪的雙吸泵內(nèi)流場數(shù)值模擬研究[D];西華大學(xué);2016年
4 劉成強(qiáng);LNG泵用誘導(dǎo)輪設(shè)計(jì)及流動(dòng)分析[D];江蘇大學(xué);2017年
5 宋風(fēng)強(qiáng);噴淋泵誘導(dǎo)輪設(shè)計(jì)與流動(dòng)分析[D];大連理工大學(xué);2010年
6 羅芳;帶前置誘導(dǎo)輪的復(fù)合葉輪型離心泵數(shù)值研究[D];西安理工大學(xué);2008年
7 牛凱斌;離心泵誘導(dǎo)輪入口回流空化的數(shù)值研究[D];西安理工大學(xué);2010年
8 孫建;低汽蝕余量泵誘導(dǎo)輪的研究[D];江蘇大學(xué);2006年
9 錢玉琴;高速離心泵流固耦合動(dòng)力特性的研究[D];江蘇大學(xué);2010年
10 郭鵬;高速鍋爐給水泵誘導(dǎo)輪和首級(jí)葉輪的內(nèi)流場的數(shù)值模擬[D];江蘇大學(xué);2005年
,本文編號(hào):1644431
本文鏈接:http://sikaile.net/kejilunwen/shiyounenyuanlunwen/1644431.html