塔河稠油乳化降黏及破乳研究
本文選題:O/W型乳狀液 切入點:稠油降黏 出處:《西南石油大學(xué)》2015年碩士論文 論文類型:學(xué)位論文
【摘要】:隨著常規(guī)原油可探儲量的減少,稠油在能源結(jié)構(gòu)中扮演著越來越重要的角色。稠油具有高凝、高黏、重質(zhì)的特點,在管輸過程中通常需要采取有效的降黏措施改善其流動性,提高輸送效率、降低輸送能耗與成本,以達到安全、經(jīng)濟輸送的目的。 本文針對塔河某區(qū)塊稠油樣,采用乳化降黏法改善稠油流動狀態(tài)。通過黏度與分水率測量,篩選乳化單劑,并將不同類型的乳化單劑進行復(fù)配,進一步使用醇類和堿類改良復(fù)配乳化劑,確定乳化降黏劑的配方。使用該配方制備O/W型乳狀液,實驗研究了油水比、稠油含水率、乳化溫度、乳化強度及無機鹽對O/W型乳狀液性質(zhì)的影響,同時,考察了油水比和乳化劑濃度兩個主要因素對O/W型乳狀液動態(tài)穩(wěn)定性的影響。基于稠油O/W型乳狀液的流變性特點,采用正交實驗方法研究了油水比、加劑濃度和輸送溫度對管輸乳狀液流變性及管輸壓降的影響,同時,對比分析了加熱降黏法、摻稀降黏法和乳化降黏法對稠油降黏的適應(yīng)性。最后,針對制備的塔河稠油O/W型乳狀液,篩選、復(fù)配得到破乳劑配方,并評價了破乳劑配方的作用效果。 結(jié)果表明,在多利,復(fù)配劑中,質(zhì)量比為4:1的TX-100與SDBS復(fù)合乳化劑和該塔河稠油配伍性最好。強堿NaOH改良復(fù)合劑效果顯著,使用0.75%的復(fù)合乳化劑與0.1%的NaOH復(fù)配制備O/W型乳狀液,乳狀液的平均粒徑為6.5μm,6h的靜置分水率為6.3%,穩(wěn)定效果良好,且降黏率達到99%以上,所以,確定0.75%的復(fù)合乳化劑與一定質(zhì)量濃度(0.08%-0.4%)的NaOH復(fù)配劑作為乳化降黏劑的最終配方。在各單因素中,油水比應(yīng)控制在6:4~8:2范圍內(nèi);稠油自身含水率不宜超過30%;乳化溫度應(yīng)控制在20℃以上;乳化強度則應(yīng)低于1500rpm;在無機鹽的影響中,單價陽離子Li+、Na+、K+的影響程度隨水化半徑減小依次增大,根據(jù)Hofmeister準(zhǔn)則,單價陰離子Cl-、Br-、I-影響程度依次減弱,且一價鹽總含量不宜超過0.6mol/L; Mg2+與Ca2+對乳狀液影響顯著,且Ca2+影響強于Mg2+,二者總含量不宜超過0.05mol/L;SO42-對該乳狀液影響較弱,PO43-對乳狀液影響顯著,其含量不宜超過0.033mol/L。此外,研究O/W型乳狀液的動態(tài)穩(wěn)定性,進一步確定油水比應(yīng)控制在6:4~7:3范圍內(nèi),乳化劑中NaOH含量應(yīng)控制在0.08%~0.1%范圍圍內(nèi)。油水比對流變方程的稠度系數(shù)K具有顯著影響,油水比、乳化劑濃度對冪律指數(shù)n影響顯著,而輸送溫度對管輸流變性影響不顯著。管輸速度對單位管長壓降具有顯著影響,對于內(nèi)徑700mm的管道,管輸速度不宜超過1.5m/s,其中,在流速相同的條件下,各高壓降實驗點具有高油水比和高乳化劑濃度的特點。對比分析加熱降黏、摻稀降黏和乳化降黏,證明稠油乳化降黏在低溫輸送方面具有明顯的優(yōu)越性。在13種破乳單劑中,HCl、FeCl3、AlCl3和CTAC等破乳單劑均具有較好的破乳效果,為了提高脫出水的清澈度,引入高聚物分別與破乳單劑進行復(fù)配,確定HCl將連續(xù)相調(diào)節(jié)為中性即pH=7,陽離子聚丙烯酰胺(CPAM)質(zhì)量濃度為0.03%為最優(yōu)破乳劑配方,此情況下,當(dāng)溫度為30℃時,靜置1h的分水率可達到92.77%,且脫出水清澈度較高。
[Abstract]:With the decrease of conventional crude oil exploration reserves, heavy oil plays a more and more important role in the energy structure. Heavy oil has high viscosity, high coagulation, heavy features, in the pipeline process usually needs to improve its liquidity and take effective measures to improve the viscosity, the transport efficiency, reduce transportation cost and energy consumption, in order to achieve safe, economical transportation.
According to a Tahe block of heavy oil, the emulsion viscosity method for improving heavy oil flow rate. By measuring the viscosity and water emulsion, screening single agent, and different types of single agent emulsion was used to use alcohol and alkali modified compound emulsifier, determine the viscosity reducing agent emulsified O/W emulsion preparation formulation. The use of the formula, experimental study on the oil-water ratio, emulsifying temperature, moisture content of heavy oil, emulsifying effect, strength and inorganic salts on O/W emulsion properties at the same time, the effects of two main factors of oil-water ratio and emulsifier concentration on the dynamic stability of emulsion type O/W milk. The characteristics of the heavy oil viscosity of O/W emulsion based on the research of oil-water ratio by orthogonal experimental method, additive concentration and transport effect of temperature on emulsion rheology, and the pipeline pressure drop of pipeline at the same time, comparative analysis of the method of reducing viscosity heating, blending diluting method and emulsification The adaptability of viscous method to viscosity reduction of heavy oil is discussed. Finally, the emulsion formulation of Tahe heavy oil O/W emulsion is screened and compounded, and the effect of demulsifier formulation is evaluated.
The results show that the dolly, mixture, the mass ratio of 4:1 TX-100 and SDBS composite emulsifier and the best compatibility. Tahe heavy alkali modified NaOH composite agent effect, composite emulsifier and 0.1% using 0.75% NaOH compound preparation of O/W emulsion, the emulsion of the average particle size of 6.5 m. The water rate is 6.3% 6h static stability, good effect, and the viscosity reduction rate reached more than 99%, therefore, to determine the composite emulsifier and the concentration of 0.75% (0.08%-0.4%) the final formulation of compound NaOH as emulsifying and viscosity reducing agent. In the single factor, oil-water ratio should be controlled in the range of 8:2 ~ 6:4 heavy oil; moisture content should not exceed 30%; emulsification temperature should be controlled at 20 DEG C; emulsifying strength is less than 1500rpm; the effect of inorganic salt, monovalent cations Li+, Na+, K+ with the influence degree of hydration radius increases, according to Hofmeister Standard, Cl- Br-, I- monovalent anions, the influence degree of isattenuated, and not the total monovalent salt content of more than 0.6mol/L; the influence of Mg2+ and Ca2+ on emulsion significantly, and the influence of Ca2+ is stronger than Mg2+, two of the total content of not more than 0.05mol/L; the weaker effect of SO42- on the emulsion, the effect of PO43- on the content of emulsion significantly. Not more than 0.033mol/L. in addition, study on dynamic stability of O/W emulsion, to further determine the oil-water ratio should be controlled in the range of 6:4 ~ 7:3, NaOH content of emulsifier should be controlled at 0.08% ~ 0.1% range. Has significant effect, consistency coefficient K oil-water ratio on the rheological equation of oil-water ratio, influence of emulsifier concentration on the power-law index n significantly, and temperature on the transport pipeline rheology effect is not significant. The pipeline speed has a significant effect on the pressure drop per unit length, the inner diameter of the pipe 700mm, pipe speed should not exceed 1.5m/s, which, in the phase velocity The same conditions, the pressure drop characteristics of the experimental points with high ratio of oil to water and the high concentration of emulsifier. Comparative analysis of heating viscosity, blending diluting viscosity and emulsification, emulsion viscosity at low temperature that heavy oil transportation has obvious superiority. In 13 kinds of single agent HCl, demulsification, FeCl3, AlCl3 and CTAC single agent has demulsification better demulsification effect, in order to improve the dehydrated water clarity, the introduction of polymers are single agent and demulsification was used to determine the HCl continuous phase adjustment for neutral pH=7, cationic polyacrylamide (CPAM) concentration was 0.03% for optimal demulsifier formulation, in this case, when the temperature is 30 degrees centigrade, water holding rate of 1H can reach 92.77%, and from the water clarity is high.
【學(xué)位授予單位】:西南石油大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TE39
【參考文獻】
相關(guān)期刊論文 前10條
1 尉小明,劉喜林,張建英,劉春和;稠油乳化降黏開采用表面活性劑的篩選[J];日用化學(xué)工業(yè);2002年04期
2 李傳憲;楊飛;林名楨;郭剛;;草橋稠油O/W乳狀液的穩(wěn)定性與流變性研究[J];高校化學(xué)工程學(xué)報;2008年05期
3 劉宏;化學(xué)破乳特性與高分子聚合物破乳[J];工業(yè)水處理;2000年09期
4 苑敬;翟雪如;徐桂英;譚業(yè)邦;張健;;無機鹽對支狀嵌段聚醚破乳作用的影響[J];高等學(xué);瘜W(xué)學(xué)報;2014年02期
5 姜佳麗;茍社全;達建文;華瑞茂;;原油破乳研究進展[J];化工進展;2009年02期
6 黃翔峰;程航;陸麗君;劉佳;;利用穩(wěn)定性分析儀研究化學(xué)破乳過程[J];化工進展;2010年05期
7 倪良,蔣文華,韓世鈞;電導(dǎo)法研究硝基苯/水/十二烷基硫酸鈉乳狀液的穩(wěn)定性[J];化工學(xué)報;2001年12期
8 鄧述波,周撫生,陳忠喜,夏福軍,余剛,蔣展鵬;聚丙烯酰胺對聚合物驅(qū)含油污水中油珠沉降分離的影響[J];環(huán)境科學(xué);2002年02期
9 吳本芳;姚奕明;趙長喜;程紅曉;高晉生;;河南特稠油降黏劑及其性能研究[J];華東理工大學(xué)學(xué)報(自然科學(xué)版);2008年06期
10 李方,李干佐,房偉,李錫忠;陰/陽離子表面活性劑復(fù)配體系的中相微乳液研究[J];化學(xué)學(xué)報;1996年01期
相關(guān)博士學(xué)位論文 前1條
1 白金美;稠油組分及乳化劑對油水界面性質(zhì)影響的研究[D];中國石油大學(xué);2009年
,本文編號:1643507
本文鏈接:http://sikaile.net/kejilunwen/shiyounenyuanlunwen/1643507.html