天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 石油論文 >

隔冷液溫度和速度對(duì)BOG壓縮機(jī)溫度場(chǎng)及應(yīng)力場(chǎng)影響的研究

發(fā)布時(shí)間:2018-03-12 18:37

  本文選題:BOG壓縮機(jī) 切入點(diǎn):隔冷液 出處:《蘭州交通大學(xué)》2017年碩士論文 論文類(lèi)型:學(xué)位論文


【摘要】:LNG(液化天然氣)作為清潔高效的能源,由于其具有環(huán)境友好,能源效率高等方面的顯著優(yōu)點(diǎn),已經(jīng)成為了現(xiàn)階段發(fā)展利用的主要能源。LNG在運(yùn)輸和卸載之時(shí),會(huì)產(chǎn)生大量的閃蒸氣,BOG壓縮機(jī)作為處理這些閃蒸氣的重要部件,已成為了研究的重點(diǎn)。因?yàn)锽OG壓縮機(jī)的進(jìn)氣溫度低,因此氣缸壁的溫度場(chǎng)和應(yīng)力場(chǎng)與常溫相比會(huì)相差很大,通入隔冷液具有一定的保冷效果,防止低溫向壓縮機(jī)別的部位進(jìn)行傳遞。由于BOG壓縮機(jī)的進(jìn)氣溫度為110K,處于超低溫狀態(tài),因此很難進(jìn)行實(shí)地的測(cè)試,本文通過(guò)CFD模擬,對(duì)BOG壓縮機(jī)氣缸壁進(jìn)行分析,改變不同的參數(shù)條件,如隔冷液流量溫度,以及加入雙缸的模型,來(lái)觀察它的應(yīng)力場(chǎng)和溫度場(chǎng),為BOG壓縮機(jī)的研制提供一定的數(shù)值依據(jù)。本文以BOG壓縮機(jī)氣缸體為主要的研究對(duì)象,通過(guò)Solidworks對(duì)氣缸體進(jìn)行1:1的建模,導(dǎo)入不同的邊界條件,在Fluent中進(jìn)行計(jì)算,將Fluent得出的溫度場(chǎng)插值到缸體模型之中,在Workbench中將溫度場(chǎng)和應(yīng)力場(chǎng)結(jié)合起來(lái),分析其變形量和熱應(yīng)力的大小。采用標(biāo)準(zhǔn)k-ε的湍流模型,對(duì)壓縮氣體(主要是甲烷)的過(guò)程,進(jìn)行動(dòng)網(wǎng)格模擬分析。一級(jí)氣缸排氣溫度約為152K,二級(jí)氣缸的排氣溫度為181K。觀察每一個(gè)時(shí)刻氣缸內(nèi)溫度從上到下溫度相差不足1K,因此用一個(gè)固定的溫度值進(jìn)行簡(jiǎn)化替代。壓縮為一個(gè)周期性的運(yùn)動(dòng),可以用一個(gè)積分公式,計(jì)算出平均的溫度。采用流固耦合和溫度差值順序耦合的方法對(duì)氣缸的溫度場(chǎng)和應(yīng)力場(chǎng)進(jìn)行研究。單級(jí)氣缸模擬時(shí)發(fā)現(xiàn)通入隔冷液對(duì)于氣缸的保冷是十分有效的,對(duì)比沒(méi)有通入隔冷液時(shí)氣缸底部的溫度場(chǎng)發(fā)現(xiàn),單級(jí)氣缸的溫度普遍上升了110K-140K。通過(guò)改變隔冷液的流速發(fā)現(xiàn),氣缸的應(yīng)力和變形量隨著隔冷液流速增加而不斷減小,當(dāng)隔冷液流速增大到1.5m/s時(shí),再繼續(xù)加大流速,氣缸底面的溫度幾乎不發(fā)生改變。相反增大隔冷液的流速,會(huì)增加流動(dòng)阻力,因此隔冷液流速穩(wěn)定在1.5m/s附近時(shí),氣缸壁的熱應(yīng)力更小,對(duì)于壓縮機(jī)的穩(wěn)定運(yùn)行更佳。在保持流速不變的前提下,通過(guò)增加隔冷液的溫度發(fā)現(xiàn),隨著隔冷液溫度的升高,氣缸壁的熱應(yīng)力也在不斷地減小,因此增大隔冷液的溫度,也是減小熱應(yīng)力的另一個(gè)辦法。在隔冷液溫度由263K上升到293K的過(guò)程中,熱應(yīng)力由11.42MPa下降到9.74MPa。對(duì)雙級(jí)氣缸模擬時(shí)采用和單級(jí)氣缸相同的方法,通入隔冷液對(duì)雙級(jí)氣缸的保冷同樣是有很大的效果。和未通入隔冷液時(shí)的底面溫度對(duì)比,雙級(jí)氣缸的溫度普遍上升了70-90K。由于雙級(jí)氣缸在兩個(gè)氣缸的交界處存在一個(gè)溫度的過(guò)渡區(qū)域,在此過(guò)渡的區(qū)域,會(huì)產(chǎn)生很大的變形量,模擬結(jié)果顯示變形量約為1.41mm。因此在實(shí)際實(shí)驗(yàn)當(dāng)中,要著重設(shè)計(jì)和觀察這部分的變化,以防止發(fā)生脆裂。
[Abstract]:As a clean and efficient energy source, LNG (liquefied natural gas) has become the main energy for transportation and unloading at the present stage due to its outstanding advantages of environmental friendliness and high energy efficiency. A large number of flash steam bog compressors have been used as an important part in the treatment of these flash vapours. Because the inlet air temperature of BOG compressor is low, the temperature field and stress field of cylinder wall will differ greatly compared with normal temperature. The coolant has a certain cooling effect and prevents the transfer from low temperature to other parts of the compressor. Because the inlet temperature of BOG compressor is 110K, it is very difficult to carry out field test, so it is very difficult to carry out field test. This paper simulates it by CFD, because the inlet air temperature of BOG compressor is 110K, so it is difficult to carry out field test. By analyzing the cylinder wall of BOG compressor, the stress field and temperature field of BOG compressor are observed by changing different parameters, such as the temperature of cooling fluid flow and the model of adding two cylinders. In this paper, the cylinder block of BOG compressor is taken as the main research object, the cylinder block is modeled with 1: 1 by Solidworks, different boundary conditions are introduced, and the calculation is carried out in Fluent. The temperature field obtained by Fluent is interpolated into the cylinder block model, and the temperature field and stress field are combined in Workbench to analyze the magnitude of deformation and thermal stress. Using the standard k- 蔚 turbulence model, the process of compressed gas (mainly methane) is studied. The exhaust temperature of the first stage cylinder is about 152K, and the exhaust temperature of the secondary cylinder is 181k. it is observed that the temperature difference in the cylinder is less than 1K from top to bottom at each time, so a fixed temperature value is used to simplify it. Instead. Compress into a periodic motion, You can use an integral formula, The average temperature is calculated. The temperature field and stress field of the cylinder are studied by using the method of fluid-solid coupling and sequential coupling of temperature difference. In contrast to the temperature field at the bottom of the cylinder without cooling fluid, it is found that the temperature of the single stage cylinder generally rises by 110K-140K. by changing the velocity of the coolant, it is found that the stress and deformation of the cylinder decrease with the increase of the flow rate. When the flow rate of the coolant increases to 1.5 m / s, the temperature at the bottom of the cylinder will hardly change when the flow rate continues to increase. On the contrary, increasing the velocity of the coolant will increase the flow resistance, so when the velocity of the coolant is stable at 1.5 m / s, The thermal stress of the cylinder wall is smaller, which is better for the stable operation of the compressor. On the premise of keeping the flow rate constant, it is found that the thermal stress of the cylinder wall decreases with the increase of the temperature of the coolant. Therefore, increasing the temperature of the coolant is another way to reduce the thermal stress. In the process of increasing the temperature of the coolant from 263K to 293K, the thermal stress decreases from 11.42 MPA to 9.74 MPA. The cooling insulation liquid also has a great effect on the cooling of the two-stage cylinder. Compared with the bottom temperature when the coolant is not passed through, The temperature of the two-stage cylinder has generally increased by 70-90K. because the two-stage cylinder has a temperature transition area at the junction of the two cylinders, there will be a large amount of deformation in this transitional area. The simulation results show that the deformation is about 1.41mm. so in the actual experiment, we should design and observe the change of this part so as to prevent the brittle fracture.
【學(xué)位授予單位】:蘭州交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TE974

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 徐繼業(yè);;BOD低溫往復(fù)壓縮機(jī)[J];當(dāng)代化工;2016年06期

2 朱琳;李賀松;高楊;;肇慶液化天然氣項(xiàng)目BOG壓縮機(jī)選型分析[J];石油和化工設(shè)備;2015年02期

3 黎喜坤;高曉蕾;董恒;;BOG壓縮機(jī)在LNG接收站的運(yùn)用探討[J];城市燃?xì)?2014年05期

4 陳金鋒;吳智敏;馮健美;彭學(xué)院;;低溫進(jìn)氣對(duì)閃蒸氣壓縮機(jī)流量影響的實(shí)驗(yàn)研究[J];西安交通大學(xué)學(xué)報(bào);2014年03期

5 邵晨;范吉全;邢桂坤;肖峰;;LNG裝置用低溫迷宮活塞式BOG壓縮機(jī)的研制[J];化工設(shè)備與管道;2013年05期

6 蘇鵬;劉玉晗;王振業(yè);王一斌;;LNG管道熱應(yīng)力分布有限元模擬[J];當(dāng)代化工;2013年08期

7 葉忠志;張園星;;液化天然氣BOG壓縮機(jī)選型分析[J];石油和化工設(shè)備;2013年03期

8 丁立晴;王雷雷;彭學(xué)院;;低溫BOG壓縮機(jī)氣缸螺栓預(yù)緊研究[J];壓縮機(jī)技術(shù);2012年06期

9 楊東輝;王雷雷;沈宇紅;張波;彭學(xué)院;;低溫閃蒸氣壓縮機(jī)氣缸溫度場(chǎng)的有限元分析[J];西安交通大學(xué)學(xué)報(bào);2013年01期

10 陳功劍;杜文峰;趙順喜;段秋曉;史濤;;提高BOG壓縮機(jī)運(yùn)行可靠性的方法[J];承德石油高等專(zhuān)科學(xué)校學(xué)報(bào);2011年04期

相關(guān)碩士學(xué)位論文 前5條

1 李赫;往復(fù)式迷宮密封壓縮機(jī)氣缸系統(tǒng)熱機(jī)耦合與流場(chǎng)有限元分析[D];沈陽(yáng)工業(yè)大學(xué);2014年

2 呂慧;基于流固耦合的飛機(jī)液壓管路動(dòng)力學(xué)分析[D];西安電子科技大學(xué);2012年

3 李旭;往復(fù)式壓縮機(jī)迷宮密封流場(chǎng)動(dòng)力和熱力特性分析及活塞結(jié)構(gòu)研究[D];沈陽(yáng)理工大學(xué);2012年

4 解元玉;基于ANSYS Workbench的流固耦合計(jì)算研究及工程應(yīng)用[D];太原理工大學(xué);2011年

5 鄧博;汽輪機(jī)汽缸溫度場(chǎng)的理論研究[D];華北電力大學(xué)(北京);2006年



本文編號(hào):1602785

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/shiyounenyuanlunwen/1602785.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶087af***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com