高鋼級(jí)天然氣管線裂紋缺陷分析
本文選題:高鋼級(jí)管道 切入點(diǎn):裂紋 出處:《西安石油大學(xué)》2015年碩士論文 論文類型:學(xué)位論文
【摘要】:管道輸送已經(jīng)成為世界范圍內(nèi)最經(jīng)濟(jì)、最便捷的石油和天然氣運(yùn)輸手段之一,然而隨著居民和工業(yè)對(duì)油氣需求的不斷增長(zhǎng),以前的低壓力、小管徑、低強(qiáng)度油氣輸送管道已經(jīng)不能滿足時(shí)代的要求,因此,高壓力、大管徑、高強(qiáng)度輸送管道應(yīng)運(yùn)而生。為了確保這些高鋼級(jí)管道在日常運(yùn)營(yíng)中的安全,除了要保證輸送管材的質(zhì)量之外,管道焊接接頭的安全狀態(tài)也至關(guān)重要,因?yàn)榻^大多數(shù)管道泄漏事故都是從焊縫處開始的。本文系統(tǒng)闡述了國(guó)內(nèi)外天然氣輸送管道的現(xiàn)狀、發(fā)展趨勢(shì)和論文研究的重要意義。理論方面以X70、X80管線鋼為載體,分析了其焊接過(guò)程中焊接接頭處隨溫度變化而產(chǎn)生的裂紋缺陷的種類、原因、危害及其相應(yīng)的預(yù)防措施。焊接過(guò)程中產(chǎn)生的這些裂紋缺陷會(huì)降低焊件結(jié)構(gòu)的強(qiáng)度,其最主要原因就是這些缺陷減小了結(jié)構(gòu)承載橫截面的有效面積,同時(shí)在缺陷周邊區(qū)域產(chǎn)生了應(yīng)力集中,從而造成對(duì)焊件的使用性能及壽命產(chǎn)生不利的影響。為了保證管道焊接接頭質(zhì)量,有必要對(duì)其進(jìn)行例行檢測(cè),而無(wú)損檢測(cè)能夠?qū)ιa(chǎn)和運(yùn)營(yíng)中的高鋼級(jí)管道進(jìn)行檢測(cè),以便能夠及時(shí)發(fā)現(xiàn)各種缺陷并采取相應(yīng)的措施,以減少管道運(yùn)營(yíng)期間不必要的損失。超聲波檢測(cè)技術(shù)因其操作方便快捷、檢測(cè)速度快、數(shù)據(jù)可靠而且成本較低等優(yōu)點(diǎn)成為對(duì)管道焊縫缺陷進(jìn)行檢測(cè)的主要手段。本課題實(shí)驗(yàn)方面利用數(shù)字式超聲波探傷儀對(duì)自制的仿自然缺陷模擬試塊進(jìn)行實(shí)踐檢測(cè),分析總結(jié)了橫波斜探頭檢測(cè)技術(shù)中探頭類型、探頭參數(shù)(頻率、K值、晶片尺寸)、耦合劑和掃查方式對(duì)檢測(cè)靈敏度的影響,并提出了如何選用探頭、耦合劑和掃查方式才能更精確地檢測(cè)焊縫中的裂紋缺陷。測(cè)得裂紋缺陷的指示長(zhǎng)度和指示高度后以及裂紋偏離焊縫中心線距離后,與預(yù)埋理論尺寸進(jìn)行對(duì)比,發(fā)現(xiàn)將近90%的實(shí)踐檢測(cè)數(shù)據(jù)誤差都在9%以內(nèi),從而驗(yàn)證了超聲波探傷在高鋼級(jí)管線焊縫裂紋缺陷檢測(cè)方面是相當(dāng)準(zhǔn)確和可靠的。
[Abstract]:Pipeline transportation has become one of the world's most economical and convenient means of transportation of oil and gas. However, with the increasing demand for oil and gas from residents and industry, the previous low pressure, small pipe diameter, Low strength oil and gas pipeline can not meet the requirements of the times. Therefore, high pressure, large diameter and high strength pipeline come into being. In order to ensure the safety of these high steel pipeline in daily operation, In addition to ensuring the quality of the pipeline, the safety state of the welded joints of the pipeline is also very important, because most of the pipeline leakage accidents begin at the weld seam. This paper systematically describes the present situation of the natural gas pipeline at home and abroad. In theory, taking X70 X80 pipeline steel as the carrier, the types and causes of crack defects caused by the change of temperature in the welding process are analyzed. The main reason is that these defects reduce the effective area of the bearing cross section of the structure, and the main reason is that these defects reduce the effective area of the bearing cross section of the structure. At the same time, stress concentration is produced in the area around the defect, which has a negative effect on the service performance and service life of the welded piece. In order to ensure the quality of the welded joint of the pipeline, it is necessary to carry out routine inspection. However, NDT can detect high grade steel pipes in production and operation so as to detect various defects in time and take corresponding measures. In order to reduce the unnecessary loss during the operation of the pipeline. The advantages of reliable data and low cost have become the main means to detect the weld defects of pipeline. In this paper, the digital ultrasonic flaw detector is used to test the self-made simulated samples of natural defects. The effects of probe type, probe parameters (frequency K value, wafer size, coupling agent and scanning mode) on the detection sensitivity in the detection technology of S-wave oblique probe are analyzed and summarized, and how to select the probe is put forward. Only by coupling agent and scanning method can the crack defects in weld seam be detected more accurately. When the indicated length and height of the crack defect and the distance between the crack and the center line of the weld seam are measured, the size of the crack is compared with that of the pre-buried theory. It is found that nearly 90% of the practical data errors are less than 9%, which verifies that ultrasonic inspection is quite accurate and reliable in the detection of weld crack defects in high grade steel pipelines.
【學(xué)位授予單位】:西安石油大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TE973
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 蒲明;;中國(guó)油氣管道發(fā)展現(xiàn)狀及展望[J];國(guó)際石油經(jīng)濟(jì);2009年03期
2 賈永泰 ,董尚元;鍋爐壓力容器無(wú)損檢測(cè)人員超聲專業(yè)考試試板技術(shù)條件[J];工業(yè)安全與防塵;1995年04期
3 李強(qiáng);楊克立;;數(shù)字式超聲波探傷儀DAC曲線的快速準(zhǔn)確制作[J];成組技術(shù)與生產(chǎn)現(xiàn)代化;2014年01期
4 王志平,賈永泰;鋼板焊接缺陷自身高度測(cè)量[J];工業(yè)安全與防塵;1999年07期
5 刁鳳東;張福強(qiáng);張春河;;低溫環(huán)境下管道焊接產(chǎn)生冷裂紋的因素及控制措施[J];焊接技術(shù);2007年04期
6 吳永勝;辛文彤;姚軍剛;李志尊;;焊前預(yù)熱對(duì)40Cr鋼手工自蔓延焊接接頭質(zhì)量的影響[J];熱加工工藝;2009年05期
7 田瑛;甄建超;孫春良;莊濤;;我國(guó)油氣管道建設(shè)歷程及發(fā)展趨勢(shì)[J];石油規(guī)劃設(shè)計(jì);2011年04期
8 王傳福;焊縫中橫向裂紋的超聲波檢測(cè)[J];無(wú)損檢測(cè);2001年03期
9 于鳳坤;趙曉順;王希望;劉淑霞;馬躍進(jìn);;無(wú)損檢測(cè)技術(shù)在焊接裂紋檢測(cè)中的應(yīng)用[J];無(wú)損檢測(cè);2007年06期
10 李福健;;我國(guó)油氣管道運(yùn)輸發(fā)展探析[J];湘潮(下半月);2010年01期
相關(guān)碩士學(xué)位論文 前5條
1 方坤;隨焊電磁感應(yīng)加熱控制焊接冷裂紋研究[D];哈爾濱工業(yè)大學(xué);2010年
2 謝琦;X80管線鋼焊接冷裂紋敏感性研究及預(yù)測(cè)[D];天津大學(xué);2008年
3 周雄;X70管線鋼焊接接頭熱裂紋與冷彎性能研究[D];華中科技大學(xué);2008年
4 王小保;服役管線焊縫缺陷的超聲定量檢測(cè)技術(shù)研究[D];西安石油大學(xué);2011年
5 姚歡;在役老管道焊縫缺陷超聲波檢測(cè)研究[D];西安石油大學(xué);2011年
,本文編號(hào):1597212
本文鏈接:http://sikaile.net/kejilunwen/shiyounenyuanlunwen/1597212.html