海洋立管內(nèi)部氣液段塞流動(dòng)特性及其流致振動(dòng)研究
本文關(guān)鍵詞: 柔性立管 段塞流 流致振動(dòng) 自由懸掛 高速攝像 CFD 出處:《西南石油大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:海洋立管作為海洋油氣生產(chǎn)中的重要樞紐,被譽(yù)為海洋石油中的生命線。立管在外部洋流與內(nèi)部油氣兩相流的共同作用下,其振動(dòng)特性變得極其復(fù)雜。國(guó)內(nèi)外學(xué)者對(duì)外流作用下的立管渦激振動(dòng)已經(jīng)做了大量的研究,這方面的成果已經(jīng)相當(dāng)豐富成熟,但氣液段塞流作為海洋立管中最常見(jiàn)的流型,由它誘發(fā)的管道振動(dòng)不可忽視,目前少有對(duì)自由懸掛的柔性立管的內(nèi)流規(guī)律與振動(dòng)規(guī)律的同步研究。因此,本文針對(duì)氣液兩相內(nèi)流作用下的柔性立管內(nèi)部段塞流流動(dòng)機(jī)理及其誘發(fā)的立管振動(dòng)問(wèn)題,綜合運(yùn)用實(shí)驗(yàn)和數(shù)值模擬方法,探究?jī)?nèi)流作用下的柔性立管振動(dòng)和內(nèi)部流體流動(dòng)規(guī)律。首先,基于相似比尺模型設(shè)計(jì)了實(shí)驗(yàn)尺寸下的柔性立管模型,利用高速攝像機(jī)捕捉內(nèi)流形態(tài)與立管位移,壓力傳感器捕捉立管底部壓力變化,開(kāi)展了共30組不同氣液速度下的立管兩相流及流致振動(dòng)實(shí)驗(yàn),通過(guò)分析發(fā)現(xiàn)實(shí)驗(yàn)組次共可分為三種流型:擬嚴(yán)重段塞流、水動(dòng)力段塞流和過(guò)渡流;立管振動(dòng)呈現(xiàn)一定的周期性,且隨液體速度增大,立管位移總體上呈現(xiàn)出逐漸減小的趨勢(shì);立管空間位形上的均方根振幅曲線反映出立管在x方向振動(dòng)存在一個(gè)波峰,在z方向上振動(dòng)存在兩個(gè)波峰,一個(gè)波谷;在振動(dòng)過(guò)程中有多個(gè)頻率共同參與。立管在不同位置的振動(dòng)軌跡形狀相異,在立管底部振動(dòng)軌跡為"1字"形,中部為"紡錘"形,上部以"長(zhǎng)條"形為主;立管底部壓力變化與管內(nèi)流體分布規(guī)律有關(guān),液體流速越大,平均壓力越大,壓力波動(dòng)幅度越小;不同組次的管內(nèi)流體分布明顯相異,液體速度越大,液塞長(zhǎng)度越短,液塞運(yùn)移速度越大;擬嚴(yán)重段塞流的四個(gè)周期能在實(shí)驗(yàn)組次中明顯觀察到。對(duì)比固定立管條件下的氣液內(nèi)流實(shí)驗(yàn)發(fā)現(xiàn),立管固定后引起底部壓力波動(dòng)幅度變小,壓力平均值呈現(xiàn)小幅度的上下波動(dòng);管內(nèi)長(zhǎng)液塞被氣體分割成多個(gè)短液塞,這也是造成壓力值變化規(guī)律存在差異的直接原因。利用計(jì)算流體力學(xué)軟件,基于雙向流固耦合技術(shù),建立了三維柔性立管氣液兩相流及流致振動(dòng)數(shù)值模擬方法,模擬計(jì)算結(jié)果與實(shí)驗(yàn)值變化規(guī)律吻合,但在數(shù)值上有一定差異,最大平均誤差為30%。數(shù)值模擬可以展現(xiàn)出立管表面在振動(dòng)過(guò)程中的等效應(yīng)力分布,表明立管上下端固定點(diǎn)是應(yīng)力值最大位置。數(shù)值模擬結(jié)果很好地解釋和補(bǔ)充了實(shí)驗(yàn)結(jié)果。
[Abstract]:As an important hub in offshore oil and gas production, marine riser is regarded as the lifeline of offshore oil and gas. The vibration characteristics have become extremely complicated. Scholars at home and abroad have done a lot of research on the vortex-induced vibration of risers under the action of outflow. The results in this field have been quite rich and mature, but the gas-liquid slug flow is the most common flow pattern in marine risers. The pipe vibration induced by it can not be ignored. At present, there are few researches on the internal flow and vibration law of the flexible riser with free suspension. Aiming at the mechanism of slug flow in flexible riser and the induced vibration of riser under the action of gas-liquid two-phase internal flow, the experimental and numerical simulation methods are used synthetically in this paper. The vibration and internal fluid flow of flexible riser under the action of internal flow are investigated. Firstly, the flexible riser model with experimental dimensions is designed based on the similarity scale model, and the internal flow pattern and riser displacement are captured by high speed camera. The pressure sensor captured the pressure change at the bottom of the riser and carried out 30 experiments of riser two-phase flow and flow-induced vibration under different gas-liquid velocities. Through analysis, it was found that the experimental group could be divided into three types of flow patterns: pseudo-serious slug flow. The riser vibration presents a certain periodicity, and the riser displacement decreases gradually with the increase of liquid velocity. The root-mean-square amplitude curve on the spatial configuration of the riser shows that there is a wave peak in the vibration of the riser in the direction of x and two peaks and a trough in the direction of z. In the process of vibration, there are many frequencies participating together. The vibration trajectory of riser in different positions is different. The vibration track is "1 word" at the bottom of riser, "spindle" in the middle, and "long strip" in the upper part. The variation of the pressure at the bottom of the riser is related to the distribution of fluid in the tube. The larger the liquid velocity, the greater the average pressure, the smaller the pressure fluctuation, the more different the fluid distribution in different groups, the larger the liquid velocity, the shorter the slug length. The four periods of pseudo-serious slug flow can be observed obviously in the experimental group. Compared with the gas-liquid flow experiment under fixed riser condition, it is found that the pressure fluctuation at the bottom becomes smaller when the riser is fixed. The average value of pressure fluctuates in a small range, and the long plug in the pipe is divided into several short plugs by gas, which is also the direct cause of the difference in the law of pressure change. Using computational fluid dynamics software, based on bidirectional fluid-solid coupling technology, A numerical simulation method for gas-liquid two-phase flow and fluid-induced vibration in flexible riser is established. The simulation results agree with the experimental values, but there are some differences in numerical value. The maximum average error is 30. The numerical simulation can show the equivalent stress distribution of the riser surface during vibration, indicating that the fixed point of the upper and lower end of the riser is the largest position of the stress value. The numerical simulation results explain and supplement the experimental results well.
【學(xué)位授予單位】:西南石油大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TE952
【相似文獻(xiàn)】
相關(guān)期刊論文 前2條
1 陳貴清;楊翊仁;;板狀梁結(jié)構(gòu)的流致振動(dòng)研究[J];學(xué)術(shù)動(dòng)態(tài);2003年02期
2 龐天照;郭偉;盛元平;郭濤;;基于流固耦合的U型管流致振動(dòng)數(shù)值分析[J];中國(guó)艦船研究;2011年04期
相關(guān)會(huì)議論文 前6條
1 邱金榮;龔自力;賈臻;;核級(jí)換熱器流致振動(dòng)及防振措施研究[A];中國(guó)核科學(xué)技術(shù)進(jìn)展報(bào)告——中國(guó)核學(xué)會(huì)2009年學(xué)術(shù)年會(huì)論文集(第一卷·第3冊(cè))[C];2009年
2 蔣自龍;李海寶;袁少波;楊杰;張明強(qiáng);喻丹萍;鐘燕;張泓波;劉勇;;核反應(yīng)堆堆內(nèi)構(gòu)件流致振動(dòng)試驗(yàn)研究[A];“力學(xué)2000”學(xué)術(shù)大會(huì)論文集[C];2000年
3 姜乃斌;毛慶;;孔板誘發(fā)管道流致振動(dòng)響應(yīng)的計(jì)算方法研究[A];中國(guó)核動(dòng)力研究設(shè)計(jì)院科學(xué)技術(shù)年報(bào)(2009)[C];2011年
4 喻丹萍;馬建中;楊杰;胡永陶;;研究堆全堆芯流致振動(dòng)綜合評(píng)價(jià)[A];慶祝中國(guó)力學(xué)學(xué)會(huì)成立50周年暨中國(guó)力學(xué)學(xué)會(huì)學(xué)術(shù)大會(huì)’2007論文摘要集(上)[C];2007年
5 范晨光;楊翊仁;;疊層板狀結(jié)構(gòu)流致振動(dòng)特性研究[A];中國(guó)力學(xué)學(xué)會(huì)學(xué)術(shù)大會(huì)'2005論文摘要集(下)[C];2005年
6 邵傳平;鄂學(xué)全;魏慶鼎;朱鳳榮;;海上結(jié)構(gòu)物流致振動(dòng)控制方法研究[A];第五屆全國(guó)水動(dòng)力學(xué)學(xué)術(shù)會(huì)議暨第十五屆全國(guó)水動(dòng)力學(xué)研討會(huì)文集[C];2001年
相關(guān)博士學(xué)位論文 前5條
1 王華坤;基于ALE動(dòng)網(wǎng)格的流固耦合分區(qū)算法及其在流致振動(dòng)分析中的應(yīng)用[D];上海交通大學(xué);2015年
2 董宇;疊層板狀結(jié)構(gòu)流致振動(dòng)響應(yīng)及穩(wěn)定性研究[D];西南交通大學(xué);2015年
3 丁林;被動(dòng)湍流控制下多柱體流致振動(dòng)研究[D];重慶大學(xué);2013年
4 唐敏;曲管結(jié)構(gòu)的三維流致振動(dòng)研究[D];華中科技大學(xué);2014年
5 代胡亮;細(xì)長(zhǎng)結(jié)構(gòu)的流致振動(dòng)及其俘能研究[D];華中科技大學(xué);2014年
相關(guān)碩士學(xué)位論文 前10條
1 趙鈺;基于數(shù)值模擬反應(yīng)堆吊籃的流致振動(dòng)響應(yīng)研究[D];西南交通大學(xué);2015年
2 李恒;不同截面形狀柱體流致振動(dòng)及能量轉(zhuǎn)換特性[D];重慶大學(xué);2015年
3 陳威霖;圓柱流致振動(dòng)數(shù)值模擬及其機(jī)理研究[D];天津大學(xué);2014年
4 胡德江;不同截面形狀柱體流致振動(dòng)特性實(shí)驗(yàn)研究[D];重慶大學(xué);2016年
5 唐有波;海洋立管內(nèi)部氣液段塞流動(dòng)特性及其流致振動(dòng)研究[D];西南石油大學(xué);2017年
6 蘭世泉;垂直微結(jié)構(gòu)湍流剖面儀流致振動(dòng)分析[D];天津大學(xué);2012年
7 黃繼露;低雷諾數(shù)層流中串列雙圓柱流致振動(dòng)的數(shù)值模擬及其機(jī)理研究[D];天津大學(xué);2012年
8 楊立紅;低雷諾數(shù)下串列多圓柱流致振動(dòng)的數(shù)值模擬及其機(jī)理研究[D];天津大學(xué);2014年
9 蘇子威;鉛鉍流動(dòng)界面特性研究[D];華北電力大學(xué);2014年
10 馮娜;流致振動(dòng)強(qiáng)化平板新風(fēng)換熱器性能的實(shí)驗(yàn)研究[D];天津大學(xué);2008年
,本文編號(hào):1503567
本文鏈接:http://sikaile.net/kejilunwen/shiyounenyuanlunwen/1503567.html