泥頁(yè)巖井壁水化損傷的蠕變失穩(wěn)力學(xué)研究
本文關(guān)鍵詞: 泥頁(yè)巖 井壁穩(wěn)定 水化損傷 核磁共振 蠕變 出處:《西北工業(yè)大學(xué)》2015年博士論文 論文類型:學(xué)位論文
【摘要】:本文針對(duì)油氣鉆井工程中迫切需要解決的泥頁(yè)巖井壁失穩(wěn)關(guān)鍵性問(wèn)題,以長(zhǎng)慶油田長(zhǎng)7層西峰233井區(qū)為依托,運(yùn)用損傷力學(xué)與流變力學(xué)相結(jié)合的方法,重點(diǎn)考察泥頁(yè)巖井壁巖石內(nèi)部存在的微缺陷損傷以及入井流體和地下流體物化作用造成的流變效應(yīng)的影響,利用核磁共振、力學(xué)實(shí)驗(yàn)、理論分析和數(shù)值模擬相結(jié)合的研究方法,構(gòu)建并引入由核磁共振T2譜表征的水化損傷變量,建立考慮水化損傷和蠕變損傷的泥頁(yè)巖蠕變模型,揭示泥頁(yè)巖井壁圍巖水化后初始缺陷蔓延、傳播、貫通到坍塌破壞的蠕變特性和演化過(guò)程,形成泥頁(yè)巖井壁蠕變損傷失穩(wěn)研究的基本理論方法。論文的主要研究?jī)?nèi)容如下:(1)巖石組分構(gòu)成及力學(xué)特性分析利用X衍射和掃描電鏡的實(shí)驗(yàn)方法,對(duì)泥頁(yè)巖巖心進(jìn)行礦物組分結(jié)構(gòu)和地層巖石物性特征的分析。測(cè)試結(jié)果發(fā)現(xiàn):該地區(qū)的泥頁(yè)巖中主要原生礦物有黃鐵礦、長(zhǎng)石和石英,其中石英含量為40%左右,巖石表現(xiàn)為明顯的脆硬性。其中粘土礦物主要成分為伊蒙混層、伊利石、綠泥石。區(qū)域地層的泥頁(yè)巖壓實(shí)程度較高,水平層理及微裂隙發(fā)育明顯。對(duì)不同含水狀態(tài)下泥頁(yè)巖巖樣進(jìn)行單軸、三軸抗壓強(qiáng)度力學(xué)變形實(shí)驗(yàn),獲得了應(yīng)力—應(yīng)變關(guān)系曲線。從結(jié)果可以看出:水化對(duì)巖石的力學(xué)性能影響很大,降低巖石的整體力學(xué)性能。(2)泥頁(yè)巖蠕變特性實(shí)驗(yàn)研究對(duì)巖石進(jìn)行不同含水率下三軸蠕變實(shí)驗(yàn),試樣在整個(gè)加載過(guò)程中,經(jīng)歷了衰減蠕變、等速蠕變和加速蠕變?nèi)齻(gè)蠕變階段。針對(duì)相同荷載水平不同含水條件的對(duì)比分析表明,隨著含水率的提高,同級(jí)荷載情況下巖石蠕變進(jìn)入穩(wěn)定階段所需的時(shí)間基本越長(zhǎng)、蠕變加載瞬間應(yīng)變?cè)酱、總?yīng)變量越大,而巖石長(zhǎng)期強(qiáng)度呈減小的趨勢(shì)。(3)基于核磁共振的泥頁(yè)巖水化損傷特征及演化分析利用核磁共振技術(shù)對(duì)不同浸泡時(shí)間的脆硬性泥頁(yè)巖試樣進(jìn)行測(cè)量,得到不同浸泡時(shí)間后試樣質(zhì)量變化、橫向弛豫時(shí)間T2譜分布以及核磁成像。結(jié)果表明:水化作用會(huì)對(duì)巖石內(nèi)部產(chǎn)生損傷,隨著浸泡時(shí)間的延長(zhǎng),微裂縫在水化的作用下快速擴(kuò)展、貫通,使巖樣表面產(chǎn)生明顯裂紋。核磁共振T2譜圖和成像結(jié)果表明水化作用使巖樣孔隙結(jié)構(gòu)重新分布,T2曲線信號(hào)幅度發(fā)生明顯變化。建立了由核磁共振T2譜圖表征的損傷變量,為識(shí)別巖石材料的損傷,提供了新的方法。(4)考慮初始水化損傷和蠕變損傷的泥頁(yè)巖蠕變本構(gòu)模型研究分析不同含水狀態(tài)下泥頁(yè)巖蠕變特性,引入由核磁共振T2譜表征的水化損傷變量,建立考慮水化損傷和蠕變損傷的泥頁(yè)巖蠕變模型。采用類比法,在提出的一維蠕變損傷演化方程的基礎(chǔ)上,建立同時(shí)考慮瞬時(shí)損傷和蠕變損傷的三維流變本構(gòu)模型。該模型既能描述巖石水化損傷后的衰減蠕變和穩(wěn)定蠕變,又能描述巖石在高應(yīng)力下的加速蠕變。是一個(gè)能反映蠕變?nèi)齻(gè)階段的水化損傷非線性蠕變模型。利用模型對(duì)長(zhǎng)7泥頁(yè)巖的蠕變?cè)囼?yàn)數(shù)據(jù)擬合的結(jié)果表明,該模型可以很好地描述泥頁(yè)巖水化損傷后巖石的蠕變特性。(5)泥頁(yè)巖的水化損傷蠕變的有限元分析及工程應(yīng)用利用FORTRAN開(kāi)發(fā)環(huán)境,把建立的三維損傷流變本構(gòu)模型編譯成子程序,在ABAQUS中采用開(kāi)發(fā)程序?qū)δ囗?yè)巖三軸蠕變實(shí)驗(yàn)進(jìn)行數(shù)值模擬,然后通過(guò)和泥頁(yè)巖的蠕變實(shí)驗(yàn)結(jié)果進(jìn)行對(duì)比,驗(yàn)證非定常流變本構(gòu)模型及程序編制的正確性。將所建的水化損傷蠕變模型用于長(zhǎng)7層西峰233井區(qū)泥頁(yè)巖層鉆井井壁穩(wěn)定分析,給出考慮損傷蠕變后泥頁(yè)巖層鉆進(jìn)的鉆井液密度圖版,用以指導(dǎo)現(xiàn)場(chǎng)鉆井。
[Abstract]:Aiming at the urgent need to solve the oil and gas drilling in shale instability problems, Changqing Oilfield 7 layer 233 wells of Xifeng area as the basis, using the method of combining damage mechanics and rheological mechanics, rheology effect focuses on the existence of the shale rock damage and micro defects into the well the fluid and underground fluid material caused by the use of nuclear magnetic resonance, mechanics experiment, research method of combining theoretical analysis and numerical simulation, construction and water damage variables introduced by T2 magnetic resonance spectroscopy characterization, a creep model of shale hydration damage and creep damage, reveal the shale rock the water after the initial defect spread, spread through to the creep characteristics and evolution process of collapse, forming shale creep damage loss theory of stabilization method research. The main contents of this paper Are as follows: (1) the rock composition and mechanics characteristics analysis and experimental methods of X diffraction and scanning electron microscope using the analysis of mineral composition structure and stratigraphic petrophysical characteristics of shale cores. The test result showed that the main minerals in the area of shale in pyrite, feldspar and quartz, quartz content around 40%, the rock is obvious brittle. The main component of clay minerals are illite smectite, illite and chlorite. Regional stratigraphic high shale compaction, horizontal bedding and micro fractures are developed. The different water condition of shale rock uniaxial deformation experiment, three axial compressive strength mechanics. To obtain the stress-strain curves. The result shows that water on Mechanical properties of rock impact, reducing the overall mechanical properties of rock. (2) experimental research on the creep characteristics of mud shale rock Three axis creep experiments of different moisture samples during the whole loading process, experienced attenuation creep, steady creep and accelerated creep creep stage three. The comparative analysis for the same load level of different water conditions show that, with the increase of moisture content, the rock creep loads into the stable stage of the time required for the more basic long, creep loading instantaneous strain increases, the total strain is larger, and the long-term strength of rock decreases. (3) shale hydration damage characteristics and evolution of nuclear magnetic resonance analysis using nuclear magnetic resonance technology in different soaking time of brittle shale samples based on the measurements of different soaking time after sample quality change of transverse relaxation time T2 spectral distribution and magnetic resonance imaging. The results show that the hydration will cause damage to the rock, with the extension of soaking time, micro cracks in the water Through with the rapid expansion of the rock surface, obvious cracks. Nuclear magnetic resonance T2 spectrum and imaging results show that the hydration of the rock pore structure re distribution curve of T2 signal amplitude changes obviously. The damage variables characterized by nuclear magnetic resonance T2 spectrum, for the identification of rock material damage, provided the new method. (4) constitutive model analysis of creep properties of shale in different moisture conditions of shale hydration initial creep damage and creep damage, water damage variable is introduced by T2 magnetic resonance spectroscopy characterization, a creep model of shale hydration damage and creep damage. By analogy method. In the one-dimensional creep damage evolution equation based on established considering three-dimensional rheological instantaneous damage and creep damage constitutive model. The model can describe the rock water damage after the decay creep and steady Creep, and can describe the accelerated creep of rock under high stress. A water damage can reflect the nonlinear creep model of three stages of creep. The creep test data fitting model of Chang 7 shale. The results show that the model can well describe the shale hydration after rock creep damage characteristics. (5) FORTRAN was developed using the finite element analysis and engineering application of shale hydration creep damage, the three-dimensional damage rheological constitutive model is developed to compile the subroutine, used in ABAQUS development program for numerical simulation of three axis creep test and creep test results of shale and shale by by contrast, verify the correctness of non steady rheological constitutive model and the program. The water damage creep model is built for analyzing the 7 layer of Xifeng 233 well area of mud shale borehole instability, creep damage are given After the mud shale drilling mud density diagram, used to guide the on-site drilling.
【學(xué)位授予單位】:西北工業(yè)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2015
【分類號(hào)】:TE21
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 徐加放,邱正松,王瑞和,馮京海,陳永浩;泥頁(yè)巖水化應(yīng)力經(jīng)驗(yàn)公式的推導(dǎo)與計(jì)算[J];石油鉆探技術(shù);2003年02期
2 和冰;;泥頁(yè)巖水化試驗(yàn)研究[J];斷塊油氣田;2008年04期
3 折海成;劉斌;華帥;張曉健;;裂縫吸水對(duì)泥頁(yè)巖強(qiáng)度的影響[J];遼寧化工;2010年08期
4 吳超;羅健生;田榮劍;劉剛;李懷科;張興來(lái);;泥頁(yè)巖水化對(duì)巖石力學(xué)參數(shù)的影響[J];石油天然氣學(xué)報(bào);2012年04期
5 王怡;劉修善;曾義金;光新軍;;泥頁(yè)巖綜合分類方法探索[J];鉆井液與完井液;2014年04期
6 鄧金根;郭東旭;周建良;劉書(shū)杰;;泥頁(yè)巖井壁應(yīng)力的力學(xué)-化學(xué)耦合計(jì)算模式及數(shù)值求解方法[J];巖石力學(xué)與工程學(xué)報(bào);2003年S1期
7 張巖;向興金;鄢捷年;吳彬;趙磊;;泥頁(yè)巖膜效率測(cè)定儀的研制[J];石油鉆采工藝;2010年S1期
8 李海旭;李皋;劉厚彬;曹獻(xiàn)平;徐力群;馮青;巴碩;;泥頁(yè)巖水化對(duì)巖石力學(xué)強(qiáng)度的影響[J];重慶科技學(xué)院學(xué)報(bào)(自然科學(xué)版);2013年05期
9 林永學(xué),,楊志敏;塔東北地區(qū)泥頁(yè)巖原始特征描述方法及應(yīng)用研究[J];石油鉆探技術(shù);1994年01期
10 黃榮樽,陳勉,鄧金根,王康平,陳治喜;泥頁(yè)巖井壁穩(wěn)定力學(xué)與化學(xué)的耦合研究[J];鉆井液與完井液;1995年03期
相關(guān)會(huì)議論文 前1條
1 張峰;程遠(yuǎn)方;趙益忠;王京印;;多場(chǎng)耦合作用下泥頁(yè)巖井壁坍塌周期分析[A];第二十屆全國(guó)水動(dòng)力學(xué)研討會(huì)文集[C];2007年
相關(guān)博士學(xué)位論文 前4條
1 王萍;泥頁(yè)巖井壁水化損傷的蠕變失穩(wěn)力學(xué)研究[D];西北工業(yè)大學(xué);2015年
2 孟英峰;泥頁(yè)巖水化反應(yīng)的系統(tǒng)仿真技術(shù)及其在油氣田開(kāi)發(fā)領(lǐng)域中的應(yīng)用[D];西南石油學(xué)院;2002年
3 鄧虎;裂縫性泥頁(yè)巖的水化穩(wěn)定性研究及其應(yīng)用[D];西南石油學(xué)院;2004年
4 王京印;泥頁(yè)巖井壁穩(wěn)定性力學(xué)化學(xué)耦合模型研究[D];中國(guó)石油大學(xué);2007年
相關(guān)碩士學(xué)位論文 前10條
1 陳西磊;鄂西渝東泥頁(yè)巖力學(xué)性能研究[D];西南科技大學(xué);2015年
2 鄒杰;煤系泥頁(yè)巖力—化耦合特性及其孔壁穩(wěn)定性研究[D];成都理工大學(xué);2015年
3 孫變變;利津洼陷沙三-沙四段泥頁(yè)巖沉積微相研究[D];中國(guó)石油大學(xué)(華東);2014年
4 孫怡;羅家地區(qū)泥頁(yè)巖層封堵型鉆井液體系的研究[D];中國(guó)石油大學(xué)(華東);2014年
5 王劍;泥頁(yè)巖的水化穩(wěn)定性研究[D];西安石油大學(xué);2012年
6 覃園圓;泥頁(yè)巖水化對(duì)井壁穩(wěn)定性影響研究[D];西安石油大學(xué);2014年
7 孔德虎;泥頁(yè)巖水化對(duì)井壁穩(wěn)定的影響規(guī)律研究[D];東北石油大學(xué);2010年
8 折海成;基于損傷力學(xué)理論的泥頁(yè)巖井壁穩(wěn)定性研究[D];西安石油大學(xué);2011年
9 陳秀榮;泥頁(yè)巖井壁穩(wěn)定性研究[D];中國(guó)地質(zhì)大學(xué);2009年
10 文凱民;泥頁(yè)巖水化對(duì)井壁穩(wěn)定影響研究[D];西南石油大學(xué);2015年
本文編號(hào):1477706
本文鏈接:http://sikaile.net/kejilunwen/shiyounenyuanlunwen/1477706.html