基于機采和集油系統(tǒng)整體的摻水參數(shù)優(yōu)化
本文關(guān)鍵詞: 三相流型 數(shù)值模擬 神經(jīng)網(wǎng)絡(luò) 系統(tǒng)能耗 系統(tǒng)收益 出處:《燕山大學(xué)》2015年碩士論文 論文類型:學(xué)位論文
【摘要】:目前,石油行業(yè)中的三相流理論還處于研究初期,流型分類多且復(fù)雜。不論是在垂直井筒或者水平集輸系統(tǒng)中,還沒有公認(rèn)的理論模型和計算公式。對于水平集油管網(wǎng),研究內(nèi)容主要包括三相流型分類和壓降計算,但是壓降計算結(jié)果和現(xiàn)場實際工況吻合不是很理想。本文針對上述情況,進(jìn)行了如下研究工作:首先,根據(jù)三相流理論,建立了水平集油環(huán)壓降模型,采用杜克勒第一法、杜克勒第二法、貝克、肖恩-布里爾4種不同的方法計算壓降,仿真了集油環(huán)上的節(jié)點壓力以及井口油壓。其次,采用正交試驗法,利用FLUENT軟件對水平集油管道內(nèi)的油氣水三相流進(jìn)行模擬,模擬了水平集油管網(wǎng)在不同流變參數(shù)下的三相流型結(jié)構(gòu)圖。借助MATLAB軟件平臺應(yīng)用BP神經(jīng)網(wǎng)絡(luò)識別模式,建立了智能識別水平集油管網(wǎng)中三相流型的方法。然后,將抽油機井地面裝置、井下抽油桿柱、抽油泵作為整體,綜合考慮油井生產(chǎn)參數(shù)和桿柱組合參數(shù),應(yīng)用機械系統(tǒng)動力學(xué)建立了懸點示功圖仿真模型、電機功率仿真模型和油井產(chǎn)量仿真模型。以泵端載荷和懸點位移為邊界條件,通過求解波動方程,研究了油井油壓對機采系統(tǒng)輸入功率、油井產(chǎn)液量的影響規(guī)律。最后,將集油和機采系統(tǒng)結(jié)合起來整體研究。以集輸管網(wǎng)作為研究對象,考慮管網(wǎng)結(jié)構(gòu)參數(shù)、管網(wǎng)走向、環(huán)境溫度等參數(shù),建立了井口油壓與集輸系統(tǒng)運行參數(shù)之間的關(guān)系,研究了集油系統(tǒng)運行參數(shù)對油井油壓的影響規(guī)律;將集輸系統(tǒng)摻水量、摻水溫度作為設(shè)計變量,在不同的摻水參數(shù)組合情況下,根據(jù)建立的集輸系統(tǒng)能耗和收益模型,以系統(tǒng)能耗最低和系統(tǒng)收益最大為目標(biāo)函數(shù),應(yīng)用優(yōu)化方法,確定集輸系統(tǒng)合理運行參數(shù)。
[Abstract]:At present, the theory of three-phase flow in petroleum industry is still in the early stage of study, the flow patterns are many and complex, whether in vertical wellbore or horizontal gathering and transportation system. There is no accepted theoretical model and calculation formula. For the horizontal tubing network, the research mainly includes the classification of three-phase flow patterns and the calculation of pressure drop. However, the results of pressure drop are not in good agreement with the actual working conditions. In this paper, the following research work is carried out: firstly, according to the three-phase flow theory, the pressure drop model of the horizontal oil gathering ring is established. The first method of Dukler, the second method of Dukler, Baker and Shawn-Brill are used to calculate the pressure drop, and the nodal pressure and wellhead oil pressure on the oil gathering ring are simulated. Secondly, the orthogonal test method is used. The three-phase flow of oil, gas and water in horizontal oil gathering pipeline is simulated by FLUENT software. The three-phase flow pattern of horizontal oil gathering pipe network under different rheological parameters is simulated. BP neural network is used to identify the pattern with the help of MATLAB software platform. The intelligent identification method of three-phase flow pattern in horizontal oil gathering pipe network is established. Then, the surface device, downhole sucker rod string and pumping pump are taken as a whole, and the production parameters and the combination parameters of rod string are considered synthetically. The simulation model of hanging point dynamometer, motor power simulation model and oil well output simulation model are established by using mechanical system dynamics. The wave equation is solved under the boundary condition of pump end load and suspension displacement. The influence of oil pressure on the input power and fluid production of oil production system is studied. Finally, the oil gathering and oil recovery system are integrated into the whole study. The pipeline network is taken as the research object and the structural parameters of the pipeline network are considered. The relationship between the wellhead oil pressure and the operating parameters of the gathering and transportation system is established, and the influence of the operating parameters of the oil gathering system on the oil pressure of the oil well is studied. Taking the water quantity and temperature of the gathering and transportation system as the design variables, according to the energy consumption and income model of the gathering and transportation system, the energy consumption and the income model are established under the condition of different mixing parameters. Taking the lowest energy consumption and maximum system income as objective functions, the reasonable operation parameters of gathering and transportation system are determined by using optimization method.
【學(xué)位授予單位】:燕山大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TE355.5;TE86
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉磊,周芳德;油氣水三相流中的復(fù)雜相態(tài)及壓力降研究[J];工程熱物理學(xué)報;2001年06期
2 吳浩江,周芳德;遺傳Marquardt神經(jīng)網(wǎng)絡(luò)識別油氣水多相流流型研究[J];化學(xué)工程;2001年01期
3 趙京梅;宮敬;于達(dá);;水平管道油-氣-水三相流動流型試驗研究[J];石油天然氣學(xué)報(江漢石油學(xué)院學(xué)報);2006年04期
4 曲卉慧;李曉平;張健濤;趙興東;;關(guān)于天然氣粘度幾種計算方法的適用性分析[J];內(nèi)蒙古石油化工;2008年10期
5 張寬慧;;摻水溫度對集油系統(tǒng)能耗損失的影響[J];內(nèi)蒙古石油化工;2011年06期
6 劉德生;徐孝軒;;水平管油氣水三相流動規(guī)律研究進(jìn)展[J];石油和化工設(shè)備;2013年01期
7 李菊,董守平;小波分析在多相流流型識別中的應(yīng)用[J];石油大學(xué)學(xué)報(自然科學(xué)版);2000年02期
8 李想;;降溫集輸節(jié)能降耗效果分析[J];石油科技論壇;2009年04期
9 董世民;姚春冬;齊振林;;以系統(tǒng)效率為目標(biāo)函數(shù)優(yōu)選抽油機井抽汲參數(shù)[J];石油學(xué)報;1993年04期
10 胡虔生,周建華;異步電動機測試特性曲線的最佳數(shù)學(xué)模型[J];微電機;1995年03期
,本文編號:1444495
本文鏈接:http://sikaile.net/kejilunwen/shiyounenyuanlunwen/1444495.html