天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

Research on Recommendation System for Healthcare Using Featu

發(fā)布時間:2023-04-02 03:59
  

【文章頁數(shù)】:104 頁

【學位級別】:博士

【文章目錄】:
Abstract
1. INTRODUCTION
    1.1. Motivation: Multi-criteria Recommendation Technique
    1.2. Structure of the Thesis
    1.3. Main Contributions
2. BACKGROUND
    2.1. Collaborative Recommendation system (CF):
    2.2. Content Recommendation System(CB):
    2.3. Knowledge-Based Recommendation System:
    2.4. Demographic Recommender Systems
    2.5. Hybrid Based Recommendation System:
        2.5.1. Weighted
        2.5.2. Switching
        2.5.3. Mixed
        2.5.4. Feature Combination
        2.5.5. Cascade
        2.5.6. Feature Augmentation
        2.5.7. Meta-level
    2.6. Multi-Criteria Recommender Systems:
        2.6.1. Neighborhood-Based Methods
        2.6.2. Ensemble-Based Methods
    2.7. Decision Support System
    2.8. Recommendation System
    2.9. Decision Support Systems in Healthcare
3. DATA MINING AND DATA FILTERING APPROACHES
    3.1. Data Preprocessing
        3.1.1. Similarity Measures
        3.1.2. Sampling
        3.1.3. Reducing Dimensionality
        3.1.4. Denoising
    3.2. Classification
        3.2.1. Nearest Neighbors
        3.2.2. Decision Trees
        3.2.3. Bayesian Classifiers
        3.2.4. Artificial Neural Networks
        3.2.5. Support Vector Machines
    3.3. Dataset Features Description
    3.4. Model Design
        3.4.1. Extracting Features:
        3.4.2. Data Mining & Service Layer:
        3.4.3. Recommendation (Application Layer):
4. RECOMMENDATION SYSTEM WITH PREDICTION OF DISEASES USING FEATUREEXTRACTION
    4.1. System Overview:
    4.2. Analysis
    4.3. Evaluation metrics
    4.4. Discussion
5. MULTI-CRITERIA RECOMMENDATION SYSTEM
    5.1. Multi-criteria decision view
        5.1.1. Multi-Attributes Decision Making
        5.1.2. Multi-Criteria Recommender Systems
        5.1.3. Tool
        5.1.4. Validation & Evaluation Metrics
    5.2. Algorithms Used
        5.2.1. Multi-Label K-Nearest Neighbors algorithm(MLKNN)
        5.2.2. Instance-Based Logistic Regression (IBLR):
        5.2.3. Slope One:
        5.2.4. RAndom k-labELsets(RAKEL):
        5.2.5. Item-Based Collaborative Filtering (IBCF):
        5.2.6. User Based Collaborative Filtering (UBCF):
        5.2.7. Perceptron with Margins (PM):
6. RISK FACTOR PREDICTION USING ARTIFICIAL INTELLIGENCE
    6.1. Methodology
        6.1.1. Cohort and Feature Selection
        6.1.2. Data source:
        6.1.3. Proposed Algorithm
        6.1.4. Variable Importance:
        6.1.5. Prediction Accuracy & Validation of Results:
    6.2. Discussion
    6.3. Limitation
7. CONCLUSION AND FUTURE WORK
LIST OF ABBRIVIATIONS
REFERENCES
PUBLISHED RESEARCH PAPERS
Acknowledgments
作者簡歷



本文編號:3778489

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/shengwushengchang/3778489.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權申明:資料由用戶ed989***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com
成年男女午夜久久久精品| 成人三级视频在线观看不卡| 欧美三级精品在线观看| 99久热只有精品视频免费看| 亚洲国产婷婷六月丁香| 黄色在线免费高清观看| 国产一区二区精品丝袜| 好吊视频有精品永久免费| 欧美区一区二在线播放| 东京热男人的天堂久久综合| 国产精品欧美激情在线观看| 久久国产青偷人人妻潘金莲| 91精品欧美综合在ⅹ| 国产乱人伦精品一区二区三区四区| 国产一区二区精品高清免费| 大香蕉久久精品一区二区字幕| 亚洲国产黄色精品在线观看| 欧美日韩精品人妻二区三区| 久久国内午夜福利直播| 欧美一本在线免费观看| 精品国产品国语在线不卡| 日韩精品日韩激情日韩综合| 亚洲国产成人精品一区刚刚| 国产精品美女午夜福利| 丁香六月啪啪激情综合区| 欧美乱妇日本乱码特黄大片| 插进她的身体里在线观看骚| 蜜桃av人妻精品一区二区三区| 天堂热东京热男人天堂| 国产精品亚洲精品亚洲| 99久久精品国产日本| 日本在线高清精品人妻| 老鸭窝精彩从这里蔓延| 亚洲精品黄色片中文字幕| 中文字幕中文字幕在线十八区 | 亚洲中文字幕免费人妻| 成人精品一区二区三区在线| 国内精品一区二区欧美| 日本大学生精油按摩在线观看| 东京热加勒比一区二区| 一区二区日本一区二区欧美|