天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 計算機應(yīng)用論文 >

Research on Affective Visual Question Answering

發(fā)布時間:2021-03-23 02:58
  視覺問答(Visual Question Answering,VQA)最近引起了機器學(xué)習(xí)領(lǐng)域研究人員的廣泛關(guān)注。已經(jīng)有許多研究者提出了不同的注意力模型,以解決關(guān)注圖像的局部區(qū)域的需要,但研究人員在特征提取過程中遺漏了圖像和視頻的基本情感信息,且答案中也沒有提供太多的情感,導(dǎo)致生成的答案不夠自然、真實。因此,論文旨在通過增加對問題和圖像(視頻)中情感信息的分析,生成體現(xiàn)情感的更自然的答案,填補VQA中未體現(xiàn)情感信息的不足。具體來說,本文主要關(guān)注具有單一情感的圖像、具有多種情感的圖像以及針對視頻的VQA問題。研究成果可直接應(yīng)用于教育、盲人視覺輔助、健康以及其它領(lǐng)域。主要貢獻如下:(1)提出基于注意力模型的單一情感感知圖像問答生成(Mood-Aware Image Question Answering,MAIQA)方法,該方法結(jié)合局部圖像特征、從圖像特定區(qū)域和問題中檢測到情緒信息,以產(chǎn)生包含情感信息的答案。這里的情感僅僅指出現(xiàn)在圖像中人物的情感而非其他物體的情感。具體而言,圖像、問題和情感的特征被嵌入到單個長短時記憶網(wǎng)絡(luò)(Long Short Term Memory,LSTM)中,且分別采用... 

【文章來源】:江蘇大學(xué)江蘇省

【文章頁數(shù)】:128 頁

【學(xué)位級別】:博士

【文章目錄】:
Abstract
摘要
Chapter 1 Introduction
    1.1 Background and motivation
    1.2 Challenges
    1.3 Contributions
    1.4 Outline of the dissertation
Chapter 2 Review of related literature
    2.1 Visual question answering
        2.1.1 Image question answering
        2.1.2 Video question answering
    2.2 Mood detection
        2.2.1 Mood detection on images
        2.2.2 Mood detection on videos
    2.3 Visual captioning
        2.3.1 Image captioning
        2.3.2 Video captioning
    2.4 Multi-task learning
    2.5 Feature embeddings
    2.6 Visual mood attribute detection
    2.7 Attention models
    2.8 Traditional visual question answering
Chapter 3 Mood-aware image question answering
    3.1 Introduction
    3.2 The MAIQA model
        3.2.1 Image, question and mood embeddings
        3.2.2 Attention models for the image, question and mood
        3.2.3 Feature learning and inference
        3.2.4 Vocabulary
        3.2.5 Feature fusion
        3.2.6 Answer prediction
    3.3 Experiments and results
        3.3.1 The image dataset customization
        3.3.2 Experiment setup
        3.3.3 Qualitative analysis of sample answers
        3.3.4 Comparison of our mood detector with other baseline models
        3.3.5 Possible answer categories
        3.3.6 Comparison of the performance of our attention models
        3.3.7 Comparison of the MAIQA LSTM model with other models
    3.4 Brief summary
Chapter 4 Multi-mood image question answering
    4.1 Introduction
    4.2 The MMIQA model
        4.2.1 Image feature extraction, embedding and attention
        4.2.2 Question feature embedding and attention
        4.2.3 Mood feature detection, embedding and attention
        4.2.4 Triple attention model
        4.2.5 Answer vocabulary
        4.2.6 Fusion of features
        4.2.7 Answer generation
    4.3 Experiments and results
        4.3.1 The image dataset customization
        4.3.2 Experiment setup
        4.3.3 Qualitative analysis
        4.3.4 Comparison of feature embedding techniques using different dataset conditions
        4.3.5 Comparison of validation results of our feature embedding techniques
        4.3.6 Comparison of the accuracy of different multi-mood detectors
        4.3.7 Analysis of the contribution of the multi-mood detector to performance of MMIQA
        4.3.8 Overall comparison of MMIQA with the baseline model
    4.4 Brief summary
Chapter 5 Multi-mood video question answering
    5.1 Introduction
    5.2 The MMVQA model
        5.2.1 Overview
        5.2.2 Video QA route for the main question answering task
        5.2.3 Affective route for mood detection
        5.2.4 Prediction of the conventional and affective answers
    5.3 Experiments and results
        5.3.1 Video datasets
        5.3.2 Experiment setup
        5.3.3 Comparison with mood detection baseline model
        5.3.4 Attention model ablation studies
        5.3.5 Analysis of the accuracy of MMVQA conventional answers
        5.3.6 Analysis of the accuracy of MMVQA affective answers
        5.3.7 Qualitative analysis
    5.4 Brief summary
Chapter 6 General conclusions and future work
    6.1 General conclusions
    6.2 Our work
    6.3 Future work
Bibliography
Acknowledgements
Academic Publications



本文編號:3094998

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/shengwushengchang/3094998.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶7accc***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com
久久99精品国产麻豆婷婷洗澡| 国产三级视频不卡在线观看| 欧美日韩国内一区二区| 国产欧美日韩不卡在线视频| 欧美精品在线播放一区二区| 日本本亚洲三级在线播放| 婷婷伊人综合中文字幕| 欧美日韩国产成人高潮| 91日韩在线视频观看| 欧美成人高清在线播放| 情一色一区二区三区四| 97人妻精品一区二区三区男同| 女厕偷窥一区二区三区在线| 日本道播放一区二区三区| 精品人妻久久一品二品三品| 亚洲高清一区二区高清| 欧洲精品一区二区三区四区| 国产欧美日韩在线精品一二区| 不卡视频免费一区二区三区| 亚洲超碰成人天堂涩涩| 国产精品免费自拍视频| 熟女白浆精品一区二区| 日本高清视频在线播放| 免费黄色一区二区三区| 日韩一级欧美一级久久| 亚洲内射人妻一区二区| 中文字幕中文字幕在线十八区| 热久久这里只有精品视频| 亚洲天堂国产精品久久精品| 麻豆精品视频一二三区| 熟女少妇久久一区二区三区| 精品一区二区三区乱码中文| 中文字幕精品少妇人妻| 国产一区欧美一区日本道| 日韩aa一区二区三区| 中文字幕亚洲在线一区| 激情五月综五月综合网| 九九热九九热九九热九九热 | 精品精品国产欧美在线| 免费一区二区三区少妇| 久久精品欧美一区二区三不卡 |