天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 施工技術(shù)論文 >

巖石形破壞過程中的能量演化機(jī)制姓

發(fā)布時(shí)間:2019-06-20 08:41
【摘要】:沖擊地壓、巖爆等巖體工程災(zāi)害本質(zhì)上是能量非線性演化至災(zāi)變的過程,從能量角度研究巖石的變形破壞規(guī)律,可以突破應(yīng)力應(yīng)變分析的傳統(tǒng)模式局限,對(duì)于巖體力學(xué)行為的深入認(rèn)識(shí)帶來一種新的視角和分析方法。本文針對(duì)巖石變形破壞過程中的能量演化機(jī)制,從能量轉(zhuǎn)化作用、能量演化及分配規(guī)律、能量演化的非線性特性、能量演化的細(xì)觀特征等四個(gè)方面研究了巖石在受載過程中的能量行為,主要取得以下進(jìn)展: (1)分析了巖石變形破壞過程中的能量轉(zhuǎn)化作用。受載巖石能量轉(zhuǎn)化大致分為能量輸入、能量積聚、能量耗散、能量釋放四個(gè)過程,輸入的總能量部分轉(zhuǎn)化為彈性能,部分轉(zhuǎn)化為其他形式的能量耗散掉;分別建立了碎塊數(shù)量與耗散能、碎塊速率與彈性能的關(guān)系,發(fā)現(xiàn)能量耗散決定了巖石破碎塊度,碎塊形成后剩余的彈性能決定了巖石破碎劇烈程度;能量驅(qū)動(dòng)巖石變形破壞主要有兩種機(jī)制:能量耗散使巖石抵抗破壞的能力降低、能量積聚使驅(qū)動(dòng)巖石破壞的能力增強(qiáng)。 (2)獲得了巖石變形破壞過程中的能量演化及分配規(guī)律。提出了巖石儲(chǔ)能極限、殘余彈性能密度和最大耗散能密度概念。單軸壓縮下彈性能隨應(yīng)力呈現(xiàn)慢-快-慢的增長模式,并于破壞時(shí)釋放出來,儲(chǔ)能極限約為0.21MJ/m3,耗散能起初增長較緩慢,臨近破壞時(shí)大幅增加,增幅可達(dá)85%左右,整個(gè)加載過程中輸入能量轉(zhuǎn)化為彈性能的比例約從60%增加到82%,臨近破壞階段有小幅下降。研究了巖石能量演化及分配規(guī)律的加載速率效應(yīng)、圍壓效應(yīng)、巖性效應(yīng)和水環(huán)境效應(yīng),并進(jìn)一步得到不同開采條件下能量演化的差異,無煤柱開采的工作面前方煤巖體最大彈性能密度是放頂煤開采的1.5倍,是保護(hù)層開采的2.3倍,而峰后能量釋放速率也由保護(hù)層開采、放頂煤開采、無煤柱開采依次增大。 (3)揭示了巖石能量演化的分叉和混沌特性。建立了巖石能量轉(zhuǎn)化的自我抑制模型,得到并驗(yàn)證了巖石內(nèi)部能量隨應(yīng)力變化的演化方程,所建模型適用于巖石變形破壞峰前階段;能量演化具有分叉和混沌性質(zhì),當(dāng)軸向應(yīng)力達(dá)到約92%峰值應(yīng)力時(shí),系統(tǒng)進(jìn)入倍周期分叉區(qū),達(dá)到約97.5%峰值應(yīng)力時(shí),進(jìn)入混沌狀態(tài);提出了能量迭代增長因子μ,其表征巖石受載過程中能量的迭代增長效應(yīng),根據(jù)能量迭代增長因子的非線性演化,可將巖石變形破壞過程分為4個(gè)階段:0μ≤1、1μ≤3、3μ≤3.5699、3.5699μ≤4,分別表征了巖石中的能量衰減、能量積聚、能量耗散和能量釋放主導(dǎo)階段。 (4)探究了巖石能量演化的細(xì)觀特征。溝通了巖石細(xì)觀幾何及強(qiáng)度特征——能量演化特征——細(xì)觀破裂特征的內(nèi)在聯(lián)系:一方面,得到了巖石細(xì)觀基元的平均強(qiáng)度、均質(zhì)度和特征尺度以及裂紋分布特征對(duì)巖石能量演化特征的影響規(guī)律,并建立了細(xì)觀特征與能量耗散的關(guān)系,表明基元均質(zhì)度決定了能量耗散的模式,而臨界能耗值和基元平均強(qiáng)度決定了能量耗散的量值;另一方面,探討了巖石能量演化特征對(duì)其細(xì)觀破裂模式的影響,建立了有效沖擊能指數(shù)與破裂面分形維數(shù)的關(guān)系,表明存在分形維數(shù)閾值,當(dāng)破裂面分形維數(shù)小于此閾值時(shí),巖石有效沖擊能指數(shù)與分形維數(shù)值呈正相關(guān)關(guān)系,反之,呈反相關(guān)關(guān)系,建立了有效沖擊能指數(shù)與微破裂演化之間的關(guān)系,表明有效沖擊能指數(shù)越大,巖石微破裂演化表現(xiàn)為“突變”的性質(zhì),有效沖擊能指數(shù)越小,巖石微破裂演化表現(xiàn)為“漸變”的性質(zhì)。 該論文有圖138幅,表28個(gè),參考文獻(xiàn)245篇。
[Abstract]:The rock burst, rock burst and other rock mass engineering disasters are the process of the non-linear evolution of energy to the cataclysm, the deformation and failure of the rock is studied from the energy angle, the traditional mode limitation of the stress-strain analysis can be broken through, In this paper, a new perspective and analysis method is presented for the in-depth understanding of the mechanical behavior of the rock mass. In the light of the energy evolution mechanism in the process of rock deformation, the energy behavior of the rock in the loading process is studied from four aspects of energy conversion, energy evolution and distribution, nonlinear characteristics of energy evolution, and micro-characteristics of energy evolution. (1) The energy conversion in the process of rock deformation is analyzed. The energy conversion of the loaded rock is generally divided into four processes of energy input, energy accumulation, energy dissipation and energy release, and the total energy input is converted into elastic energy, and the energy is converted into other forms of energy to be dissipated; and the number and dissipation of the fragments are respectively established. The relationship between the energy dissipation and the energy dissipation determines the degree of rock fragmentation, and the energy-driven rock deformation is mainly composed of two mechanisms: energy dissipation reduces the capacity of the rock to resist the destruction. A low, energy build-up that increases the ability to drive the rock. The energy evolution and distribution in the process of rock deformation and destruction are obtained. Distribution law. The energy storage limit, the residual elastic energy density and the maximum dissipation energy density of the rock are put forward. Concept of degree. The elastic energy in single-axis compression presents a slow-fast-slow growth mode with the stress, and is released at the time of failure. The energy storage limit is about 0.21 MJ/ m3. The dissipation can initially increase relatively slowly. The increase of the increase can reach 85. On the left and right, the proportion of input energy into the elastic energy in the whole loading process is increased from 60% to 82%, and the adjacent failure phase is small The loading rate effect, the confining pressure effect, the lithology effect and the water environment effect of the rock energy evolution and the distribution law are studied, and the difference of the energy evolution under different mining conditions is further obtained. The maximum elastic energy density of the square coal rock mass before the work of the coal pillar mining is 1. And the release rate of the post-peak energy is also mined by the protective layer, the top coal mining and the non-coal pillar mining are carried out. (3) The bifurcation of the evolution of the rock's energy is revealed. The self-inhibition model of rock energy conversion is established, and the evolution equation of the internal energy of the rock changes with the stress is obtained. The model is suitable for the pre-peak phase of rock deformation failure. The energy evolution has the characteristics of bifurcation and mixing, and when the axial stress reaches about 92% When the peak stress is reached, the system enters the bifurcation area of the time period, reaches about 97.5% of the peak stress, and enters the mixed state; the energy iteration growth factor. mu. is put forward, which is characterized by the iterative growth effect of the energy in the loading process of the rock, and according to the energy iteration growth factor, The nonlinear evolution of rock deformation can be divided into four stages:0. mu.1,1. m.3,3. m., 3.5699, 3.5699. m.4, respectively. The energy attenuation, energy accumulation, energy dissipation and energy release in the rock are respectively characterized. In that lead stage. (4) the energy of the rock is explored. The micro-characteristics of the evolution are discussed. The internal relation of the micro-geometry of the rock and the characteristics of the strength and the characteristic of the energy evolution _ on the characteristics of the micro-fracture is communicated. On the one hand, the average strength, the homogeneity and the characteristic scale of the mesoscale of the rock and the characteristics of the crack distribution on the evolution of the rock energy are obtained. The influence law of the characteristics is established, and the relation between the micro-characteristics and the energy dissipation is established. The model of energy dissipation is determined by the average degree of the element, and the critical energy consumption value and the average intensity of the element determine the magnitude of the energy dissipation; on the other hand, the micro-structure of the rock energy evolution is discussed. The relationship between the effective impact energy index and the fractal dimension of the fracture surface is established, which indicates that the fractal dimension threshold exists. When the fractal dimension of the fracture surface is smaller than the threshold, the effective impact energy index of the rock is in a positive correlation with the fractal dimension value, and vice versa. The relationship between the effective impact energy index and the micro-fracture evolution is established, which shows that the larger the effective impact energy index, the evolution of the micro-fracture of the rock shows the nature of the "mutational", the smaller the effective impact energy index, and the rock micro-fracture evolution is

"Grady" . The paper is shown in Figure 138 with 28 tables
【學(xué)位授予單位】:中國礦業(yè)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2013
【分類號(hào)】:TU45

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 袁子清;唐禮忠;;巖爆傾向巖石的聲發(fā)射特征試驗(yàn)研究[J];地下空間與工程學(xué)報(bào);2008年01期

2 察美峰,孔廣亞,賈立宏;巖體工程系統(tǒng)失穩(wěn)的能量突變判斷準(zhǔn)則及其應(yīng)用[J];北京科技大學(xué)學(xué)報(bào);1997年04期

3 王其勝;萬國香;李夕兵;;動(dòng)靜組合加載下巖石破壞的聲發(fā)射實(shí)驗(yàn)[J];爆炸與沖擊;2010年03期

4 李夕兵,古德生;巖石在不同加載波條件下能量耗散的理論探討[J];爆炸與沖擊;1994年02期

5 周筑寶,盧楚芬,鄭學(xué)軍;耗散型材料的本構(gòu)關(guān)系理論[J];長沙鐵道學(xué)院學(xué)報(bào);1997年02期

6 周筑寶,盧楚芬,鄭學(xué)軍;最小耗能原理及其驗(yàn)證和應(yīng)用前景展望[J];長沙鐵道學(xué)院學(xué)報(bào);1997年04期

7 周筑寶,盧楚芬,劉長文;最小耗能原理在結(jié)構(gòu)分析中的應(yīng)用[J];長沙鐵道學(xué)院學(xué)報(bào);1998年01期

8 周筑寶,,盧楚芬,鄭學(xué)軍;按能量原理建立強(qiáng)度理論的新探索與展望[J];長沙鐵道學(xué)院學(xué)報(bào);1996年04期

9 黃明利,唐春安,朱萬成;巖石單軸壓縮下破壞失穩(wěn)過程SEM即時(shí)研究[J];東北大學(xué)學(xué)報(bào);1999年04期

10 夏昌敬;鞠楊;謝和平;;爆炸載荷下巖石損傷與能量耗散的數(shù)值分析[J];彈道學(xué)報(bào);2006年03期



本文編號(hào):2503080

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/sgjslw/2503080.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶a1a2d***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com