EM算法及其在變形監(jiān)測數(shù)據(jù)處理中的應(yīng)用
[Abstract]:In order to ensure the safety of construction, it is necessary to monitor it systematically. Through monitoring and using the observation data, the deformation characteristics and the development law of the building are analyzed and grasped, and the trend of deformation is predicted and analyzed. Because of the existence of various influence factors, such as human beings and instruments, the missing observation data or the error or abnormal error in the observation value lead to the incomplete result of measurement data. But when the missing observation value is necessary for data processing, it is necessary to process the missing data, so that the quality of missing measurement data processing can be improved effectively, and the accuracy and reliability of measurement can be further improved. According to the principle of EM algorithm, taking the monitoring data of pile top settlement in urban deep foundation pit engineering as the research object, this paper carries out the research of fitting and forecasting the missing monitoring data. The main research work is as follows: 1. This paper summarizes the methods commonly used in measurement data processing, and analyzes the applicable conditions, advantages and disadvantages of these methods by comparing various incomplete measurement data processing methods. This paper introduces the basic principle and nature of EM algorithm, analyzes the missing mechanism and pattern of data, determines the pattern of data research in this paper, and finally gives the basis for judging the effect of data processing. Combining EM algorithm with Chebyshev polynomial regression analysis method in incomplete measurement data processing, the realization steps of EM algorithm based polynomial regression analysis in measurement data processing are studied and discussed, and the formula derivation is given. In order to realize the incomplete measurement data processing based on EM algorithm. 4. The exponential smoothing method and BP neural network model method are used to predict the measured settlement data respectively. Comparing the results of EM algorithm, it is found that the whole prediction accuracy of EM algorithm is the highest. It shows that EM algorithm is reasonable and feasible in incomplete measurement data processing.
【學(xué)位授予單位】:長沙理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2013
【分類號】:TU196.1
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李濤;任建喜;毛巨省;;城市地鐵車站深基坑施工監(jiān)測方案設(shè)計(jì)研究[J];地下空間與工程學(xué)報(bào);2007年S2期
2 節(jié)斌;綜合運(yùn)用非線性回歸和時間序列分析研究邊坡變形[J];測繪科學(xué);2003年03期
3 郭金運(yùn),靳奉祥,劉國林;不完全測量數(shù)據(jù)的應(yīng)用研究[J];測繪通報(bào);2002年02期
4 胡國榮,歐吉坤;改進(jìn)的高動態(tài)GPS定位自適應(yīng)卡爾曼濾波方法[J];測繪學(xué)報(bào);1999年04期
5 鐘萍;丁曉利;鄭大偉;陳武;徐幼麟;;GPS結(jié)構(gòu)振動監(jiān)測數(shù)據(jù)濾波方法及其性能實(shí)驗(yàn)研究[J];測繪學(xué)報(bào);2007年01期
6 周曉賢,吳中如;大壩安全監(jiān)控模型中灰參數(shù)的識別[J];水電自動化與大壩監(jiān)測;2002年01期
7 林東方;宋迎春;金昊;;不完全測量數(shù)據(jù)的EM處理算法[J];大地測量與地球動力學(xué);2011年04期
8 徐曼;喬穎;魯宗相;;短期風(fēng)電功率預(yù)測誤差綜合評價(jià)方法[J];電力系統(tǒng)自動化;2011年12期
9 趙紅新;;隧道量測數(shù)據(jù)的回歸分析[J];福建建筑;2008年04期
10 毛健;趙紅東;姚婧婧;;人工神經(jīng)網(wǎng)絡(luò)的發(fā)展及應(yīng)用[J];電子設(shè)計(jì)工程;2011年24期
相關(guān)碩士學(xué)位論文 前10條
1 惠沈盈;觀測數(shù)據(jù)不完全的動態(tài)定位算法研究[D];中南大學(xué);2011年
2 李磊;地基沉降預(yù)測方法分析[D];浙江大學(xué);2004年
3 葉斌;變形模型的分析研究以及變形的預(yù)測[D];同濟(jì)大學(xué);2006年
4 彭廣亮;變形監(jiān)測數(shù)據(jù)處理與分析方法研究[D];遼寧工程技術(shù)大學(xué);2007年
5 張成萍;殘缺數(shù)據(jù)的填補(bǔ)[D];中南大學(xué);2006年
6 張登攀;路基沉降觀測數(shù)據(jù)處理及預(yù)測模型研究[D];長沙理工大學(xué);2008年
7 蘇曉慶;基于小波包變換的變形時間序列數(shù)據(jù)分析方法的研究[D];山東理工大學(xué);2008年
8 袁中萸;多元線性回歸模型中缺失數(shù)據(jù)填補(bǔ)方法的效果比較[D];中南大學(xué);2008年
9 張福榮;自適應(yīng)卡爾曼濾波在變形監(jiān)測數(shù)據(jù)處理中的應(yīng)用研究[D];長安大學(xué);2009年
10 畢龍珠;混沌時間序列在建筑物變形預(yù)測中的應(yīng)用研究[D];長安大學(xué);2009年
本文編號:2154791
本文鏈接:http://sikaile.net/kejilunwen/sgjslw/2154791.html