高強(qiáng)鋼焊接工字形截面壓彎構(gòu)件局部—整體相關(guān)屈曲
[Abstract]:The aspect ratio of the components made of high strength steel should not be too large, while the width and thickness of the plates should be large. Therefore, the local and global buckling is very important. For I-section members, the local buckling of web does not mean the loss of load-bearing capacity. By loosening the ratio of web height to thickness and utilizing the strength of web after buckling, the bearing capacity can be improved and the material can be saved. In this paper, the finite element method is used to analyze the ultimate bearing capacity of Q460 steel welded I-section compression and bending members whose web height / thickness ratio exceeds the limit, and the effects of web height to thickness ratio, flange width to thickness ratio, length to thickness ratio and eccentricity on the buckling performance of Q460 steel are studied. The effect of initial defects is analyzed by recalculating some members without adding residual stress or initial geometric defects, and a modified formula for calculating the ultimate load-bearing capacity of local and global buckling of Q460 steel compression and bending members is proposed. The results show that the finite element model in this paper can well simulate the nonlinear buckling behavior of I-shaped bending members with cross section. The ultimate bearing capacity of the members increases with the increase of the ratio of height to thickness of the web, the strength retention capacity of the web after buckling increases, and the ductility of the members increases. On the contrary, when the flange width to thickness ratio increases, the ultimate bearing capacity decreases, and the strength retention capacity and ductility decrease after buckling of the web. When the aspect ratio increases, the stiffness decreases, the ultimate bearing capacity decreases, but the ductility increases. With the increase of eccentricity, the bending deformation plays the leading role, the deflection in the span increases sharply, and the axial force changes relatively slowly. The existence of initial defects has a significant effect on the reduction of ultimate bearing capacity. The calculated results of the modified formula are in good agreement with the finite element results.
【學(xué)位授予單位】:西安建筑科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2013
【分類號(hào)】:TU392.1
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 顏衛(wèi)亨,張興武;寬腹板Ⅰ形截面偏壓構(gòu)件平面內(nèi)承載力的探討[J];四川建筑科學(xué)研究;1996年02期
2 班慧勇;施剛;石永久;王元清;;超高強(qiáng)度鋼材焊接截面殘余應(yīng)力分布研究[J];工程力學(xué);2008年S2期
3 申紅俠;;高強(qiáng)度鋼焊接方形截面軸心受壓構(gòu)件的局部和整體相關(guān)屈曲[J];工程力學(xué);2012年07期
4 張銀龍;茍明康;李寧;梁川;;高強(qiáng)鋼軸心受壓構(gòu)件整體穩(wěn)定性研究[J];鋼結(jié)構(gòu);2010年06期
5 施剛;班慧勇;石永久;王元清;;高強(qiáng)度鋼材鋼結(jié)構(gòu)的工程應(yīng)用及研究進(jìn)展[J];工業(yè)建筑;2012年01期
6 施剛;林錯(cuò)錯(cuò);王元清;石永久;;高強(qiáng)度鋼材箱形截面軸心受壓短柱局部穩(wěn)定試驗(yàn)研究[J];工業(yè)建筑;2012年01期
7 崔嵬;;高強(qiáng)度鋼材鋼構(gòu)件的研究現(xiàn)狀和應(yīng)用簡(jiǎn)介[J];建筑結(jié)構(gòu);2011年S1期
8 施剛;石永久;王元清;;運(yùn)用ANSYS分析超高強(qiáng)度鋼材鋼柱整體穩(wěn)定特性[J];吉林大學(xué)學(xué)報(bào)(工學(xué)版);2009年01期
9 施剛;王元清;石永久;;高強(qiáng)度鋼材軸心受壓構(gòu)件的受力性能[J];建筑結(jié)構(gòu)學(xué)報(bào);2009年02期
10 李國強(qiáng);王彥博;陳素文;孫飛飛;;Q460高強(qiáng)鋼焊接箱形柱軸心受壓極限承載力參數(shù)分析[J];建筑結(jié)構(gòu)學(xué)報(bào);2011年11期
本文編號(hào):2147987
本文鏈接:http://sikaile.net/kejilunwen/sgjslw/2147987.html