天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

被動(dòng)式環(huán)境調(diào)控建筑并行設(shè)計(jì)平臺(tái)構(gòu)建方法研究

發(fā)布時(shí)間:2018-06-21 03:21

  本文選題:被動(dòng)式環(huán)境調(diào)控建筑 + 并行設(shè)計(jì) ; 參考:《大連理工大學(xué)》2013年碩士論文


【摘要】:傳統(tǒng)的建筑設(shè)計(jì)屬于一個(gè)串行的線性終端式過程,不同專業(yè)相互之間沒有太多的交叉設(shè)計(jì),室內(nèi)環(huán)境調(diào)控主要是通過曖通工程師后期的設(shè)備系統(tǒng)設(shè)計(jì)來完成,這樣的設(shè)計(jì)方法不僅在建造階段和運(yùn)行階段造成大量的資源和能源消耗,而且還會(huì)對(duì)環(huán)境造成污染破壞。針對(duì)這一現(xiàn)象,在設(shè)計(jì)過程中應(yīng)該充分挖掘建筑自身的調(diào)節(jié)潛力,通過被動(dòng)式環(huán)境調(diào)控技術(shù)及可再生能源利用實(shí)現(xiàn)以盡可能低的資源和能源消耗最大限度地改善建筑整體熱性能。被動(dòng)式環(huán)境調(diào)控建筑的設(shè)計(jì)需要重新審視傳統(tǒng)的線性終端式設(shè)計(jì)流程,暖通工程師有必要全程參與到建筑設(shè)計(jì)過程中輔助建筑師完成建筑熱設(shè)計(jì)的優(yōu)化,以進(jìn)一步完善設(shè)計(jì)方案,在建筑設(shè)計(jì)初始階段最大化地實(shí)現(xiàn)建筑節(jié)能。本文通過對(duì)被動(dòng)式環(huán)境調(diào)控建筑和設(shè)計(jì)策略和技術(shù)應(yīng)用進(jìn)行研究分析,構(gòu)建基于BIM方法的建筑師與工程師并行設(shè)計(jì)平臺(tái),對(duì)設(shè)計(jì)過程中建筑設(shè)計(jì)方案的性能評(píng)價(jià)的一些關(guān)鍵應(yīng)用基礎(chǔ)問題進(jìn)行研究,探索被動(dòng)式環(huán)境調(diào)控建筑的設(shè)計(jì)及評(píng)價(jià)方法。本論文通過理論和實(shí)驗(yàn)研究、工程案例設(shè)計(jì)實(shí)踐,重點(diǎn)探討了以下問題: 首先,選用并行設(shè)計(jì)方法作為被動(dòng)式環(huán)境調(diào)控建筑設(shè)計(jì)的基礎(chǔ)方法,建立了并行設(shè)計(jì)過程中建筑性能評(píng)價(jià)體系,該建筑性能評(píng)價(jià)模型能夠貫穿整個(gè)建筑設(shè)計(jì)建造過程,即概念設(shè)計(jì)分析建筑微氣候,初步設(shè)計(jì)階段評(píng)價(jià)建筑光環(huán)境和熱環(huán)境,當(dāng)建筑施工完成后利用溫度場(chǎng)可視化對(duì)建筑熱性能進(jìn)行評(píng)價(jià)。并行設(shè)計(jì)方法和評(píng)價(jià)體系的建立為構(gòu)建被動(dòng)式環(huán)境調(diào)控建筑并行設(shè)計(jì)平臺(tái)提供了理論基礎(chǔ)。 其次,針對(duì)被動(dòng)式環(huán)境調(diào)控建筑設(shè)計(jì)策略和技術(shù)應(yīng)用進(jìn)行了研究。對(duì)于被動(dòng)式環(huán)境調(diào)控建筑設(shè)計(jì)策略和技術(shù)的應(yīng)用遵循金字塔法則,應(yīng)用設(shè)計(jì)策略和技術(shù)以改變建筑形式、圍護(hù)結(jié)構(gòu)來減少建筑能源需求和利用被動(dòng)式技術(shù)應(yīng)用可再生能源為主要目標(biāo),盡量避免使用輔助設(shè)備;研究了建筑組群、建筑單體和建筑構(gòu)件三個(gè)尺度上自然采光、采暖、降溫和通風(fēng)四個(gè)方面可利用的被動(dòng)式環(huán)境調(diào)控建筑設(shè)計(jì)策略,并通過案例分析著重研究了應(yīng)用被動(dòng)式采暖技術(shù)對(duì)建筑能耗的影響,分析結(jié)果表明對(duì)于案例建筑在北京地區(qū)使用附加陽(yáng)光間和太陽(yáng)能空氣集熱器技術(shù)可以降低能耗38.7%,研究被動(dòng)式設(shè)計(jì)策略的適用性得出北京、蘭州、西安、沈陽(yáng)四個(gè)城市中,北京和蘭州適合使用附加陽(yáng)光間技術(shù),四個(gè)城市太陽(yáng)能空氣集熱器的供暖保證率由高到低依次為北京38%、蘭州35%、沈陽(yáng)31%和西安27%。 第三,基于BIM方法對(duì)建筑設(shè)計(jì)不同階段設(shè)計(jì)方案的性能評(píng)價(jià)進(jìn)行了應(yīng)用研究。在建筑規(guī)劃布局階段,利用Weather Tool確定建筑的最佳朝向以及利用焓濕圖分析被動(dòng)式策略對(duì)建筑熱舒適范圍的影響;建筑初步設(shè)計(jì)階段,利用Autodesk Ecotect Analysis對(duì)建筑自然采光和熱環(huán)境兩個(gè)方面進(jìn)行分析來評(píng)價(jià)建筑師的設(shè)計(jì)方案,以便幫助建筑師完成熱優(yōu)化設(shè)計(jì),進(jìn)一步完善設(shè)計(jì)方案;建筑施工完成后,通過實(shí)驗(yàn)研究利用Swema Review對(duì)室內(nèi)溫度場(chǎng)可視化來評(píng)價(jià)已有建筑的熱性能,同時(shí)可以作為專家信息庫(kù)加入并行設(shè)計(jì)平臺(tái),輔助建筑師進(jìn)行方案決策。 最后,提出了被動(dòng)式環(huán)境調(diào)控建筑并行設(shè)計(jì)平臺(tái)構(gòu)建方法,即以建筑師和暖通工程師構(gòu)成設(shè)計(jì)團(tuán)隊(duì),基于能夠整合建筑信息的BIM平臺(tái)作為并行設(shè)計(jì)平臺(tái),建筑師和暖通工程師從概念設(shè)計(jì)到建筑信息模型的建立再到初步設(shè)計(jì)與備選設(shè)計(jì)方案的優(yōu)化,相互交叉配合完成并行設(shè)計(jì)實(shí)現(xiàn)建筑熱設(shè)計(jì)優(yōu)化,采用熵權(quán)多目標(biāo)決策法綜合建筑能耗、被動(dòng)式技術(shù)供熱量、平均自然采光系數(shù)、全年不舒適度、經(jīng)濟(jì)性指標(biāo)等評(píng)價(jià)指標(biāo)選出最優(yōu)的設(shè)計(jì)方案,并通過案例設(shè)計(jì),探討基于并行設(shè)計(jì)平臺(tái)進(jìn)行被動(dòng)式環(huán)境調(diào)控建筑設(shè)計(jì)的具體應(yīng)用方法。
[Abstract]:The traditional architectural design belongs to a serial linear terminal process. There is not much cross design between different specialties. The control of indoor environment is accomplished mainly through the design of the equipment system in the later stage of the engineer. This design method not only causes a lot of resources and energy consumption in the construction phase and transportation stage. In the design process, we should fully excavate the adjustment potential of the building itself, and realize the maximum thermal performance of the building with the lowest possible resources and energy consumption through the passive environment regulation and control technology and the renewable energy utilization. The establishment of passive environmental regulation and control building. It is necessary to reexamine the traditional linear terminal design process. It is necessary for HVAC engineers to participate in the optimization of architectural thermal design by auxiliary architects in the process of architectural design, to further improve the design scheme and to maximize the realization of architectural Festival energy in the initial stage of architectural design. The design strategy and technical application are studied and analyzed. A parallel design platform for architects and engineers based on the BIM method is constructed. Some key application basic problems of the performance evaluation of the architectural design program in the design process are studied to explore the design and evaluation methods of the passive environmental regulation and control architecture. The practice of project case design focuses on the following issues:
Firstly, the parallel design method is selected as the basic method of passive environmental control architecture design, and the architecture performance evaluation system in the process of concurrent design is established. The building performance evaluation model can run through the whole building design and construction process, that is, the conceptual design is used to analyze the architectural microclimate, and the initial design stage is used to evaluate the building light environment and thermal environment. When, after completion of construction to evaluate the thermal performance of building by using the temperature field visualization. A parallel design method and evaluation system for building concurrent design platform for passive climate control provides a theoretical basis.
Secondly, the design strategy and technology application of passive environment control are studied. The application of the passive environment control architecture design strategy and technology follows the Pyramid rule, and the design strategy and technology are applied to change the building form, the enclosure structure is used to reduce the energy source demand and to use the passive technology to apply renewable energy. The main objective is to avoid the use of auxiliary equipment, and study the design strategy of the passive environment which can be used in the four aspects of natural lighting, heating, cooling and ventilation on three scales of building groups, building monomers and building components, and focusing on the application of passive heating technology to the building energy consumption through case analysis. The results show that the use of additional sunlight and solar air collector technology for the case building in Beijing can reduce energy consumption by 38.7%. The applicability of the passive design strategy is found in the four cities of Beijing, Lanzhou, Xi'an and Shenyang, Beijing and Lanzhou are suitable for the use of additional sunlight technology and four urban solar air. The heating rate of collector is from high to low in order of 38% in Beijing, 35% in Lanzhou, 31% in Shenyang and 27%. in Xi'an.
Third, based on the BIM method, the performance evaluation of the design scheme of different stages of architectural design is applied. In the stage of building planning and layout, Weather Tool is used to determine the best orientation of the building and the influence of the passive strategy on the thermal comfort range of the building by using the enthalpy wet map; the initial design stage of the building, using the Autodesk Ecotect An Alysis analyzes the two aspects of the natural lighting and thermal environment of the building to evaluate the architect's design scheme so as to help the architects to complete the thermal optimization design and further improve the design scheme. After the completion of the construction, the thermal performance of the existing buildings can be evaluated by using the Swema Review to evaluate the thermal performance of the existing buildings, and can also be used to evaluate the thermal performance of the existing buildings. A concurrent design platform is added as an expert information base to assist architects in making decisions.
Finally, the method of building a parallel design platform for passive environmental regulation and control is proposed. The design team is composed of architects and HVAC engineers, based on the BIM platform which can integrate the building information as a parallel design platform. The architects and HVAC engineers are from the concept design to the building letter and interest model to the preliminary design and the alternative design. The optimization of the scheme is completed with each other. The optimization of building thermal design is realized by the concurrent design. The entropy weight multi-objective decision method is used to integrate building energy consumption, the passive technical heat supply, the average natural lighting coefficient, the annual uncomfortableness and the economic index are selected to select the best design scheme, and the design of the case is based on the case design. The specific application method of the platform for passive environmental regulation and architectural design.
【學(xué)位授予單位】:大連理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2013
【分類號(hào)】:TU111.4

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 孫澄;邢凱;韓昀松;;數(shù)字語(yǔ)境下的建筑節(jié)能設(shè)計(jì)模式初探[J];動(dòng)感(生態(tài)城市與綠色建筑);2012年01期

2 殷顯煥;宋永發(fā);;居住建筑節(jié)能設(shè)計(jì)綜合評(píng)價(jià)及其優(yōu)選方法研究[J];建筑節(jié)能;2009年10期

3 李楠;李百戰(zhàn);沈艷;喻偉;丁勇;;住宅建筑自然通風(fēng)對(duì)室內(nèi)熱環(huán)境的影響[J];重慶大學(xué)學(xué)報(bào);2009年07期

4 王德芳,午鎖平,喜文華;被動(dòng)式太陽(yáng)能采暖房數(shù)學(xué)模型及模擬計(jì)算程序——Ⅰ.直接受益型和集熱墻型PSHDC(上篇)[J];甘肅科學(xué)(甘肅省科學(xué)院學(xué)報(bào));1989年00期

5 王德芳,午鎖平,喜文華;附加陽(yáng)光間型被動(dòng)式太陽(yáng)能采暖房數(shù)學(xué)模型及其模擬程序PSHS[J];甘肅科學(xué)(甘肅省科學(xué)院學(xué)報(bào));1990年02期

6 李恩;劉加平;楊柳;;拉薩市直接受益式太陽(yáng)房居住建筑被動(dòng)式設(shè)計(jì)優(yōu)化研究[J];工業(yè)建筑;2012年02期

7 孫懷宇;王祝敏;;二維傳熱差分算法分析及通用計(jì)算程序?qū)崿F(xiàn)[J];化學(xué)工程師;2006年02期

8 劉月莉,張家猷,祖雅君;淺談北方地區(qū)建筑幕墻熱工設(shè)計(jì)[J];建筑科學(xué);2002年04期

9 邱奎寧;IFC標(biāo)準(zhǔn)在中國(guó)的應(yīng)用前景分析[J];建筑科學(xué);2003年02期

10 夏春海;朱穎心;;面向建筑方案的節(jié)能設(shè)計(jì)研究——設(shè)計(jì)流程和工具[J];建筑科學(xué);2009年06期

相關(guān)會(huì)議論文 前2條

1 蘆潮;唐汝寧;;高寒地區(qū)附加陽(yáng)光間式太陽(yáng)房的節(jié)能分析[A];全國(guó)建筑節(jié)能技術(shù)與設(shè)計(jì)學(xué)術(shù)會(huì)議論文集[C];2005年

2 劉強(qiáng);劉燕;樊齊琦;;設(shè)計(jì)院協(xié)同設(shè)計(jì)平臺(tái)淺談[A];計(jì)算機(jī)技術(shù)在工程設(shè)計(jì)中的應(yīng)用——第十六屆全國(guó)工程設(shè)計(jì)計(jì)算機(jī)應(yīng)用學(xué)術(shù)會(huì)議論文集[C];2012年

相關(guān)博士學(xué)位論文 前2條

1 張偉;結(jié)合天然采光的辦公建筑節(jié)能研究[D];天津大學(xué);2005年

2 易樺;新型PV-Trombe墻系統(tǒng)的理論與實(shí)驗(yàn)研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2007年

相關(guān)碩士學(xué)位論文 前6條

1 王影;新型太陽(yáng)能集熱墻的傳熱性能研究[D];東北石油大學(xué);2011年

2 趙昂;BIM技術(shù)在計(jì)算機(jī)輔助建筑設(shè)計(jì)中的應(yīng)用初探[D];重慶大學(xué);2006年

3 張群;熵理論在管理決策分析中的應(yīng)用研究[D];南京信息工程大學(xué);2007年

4 付曉惠;綠色建筑整合設(shè)計(jì)理論及其應(yīng)用研究[D];西南交通大學(xué);2011年

5 鄭聰;基于BIM的建筑集成化設(shè)計(jì)研究[D];中南大學(xué);2012年

6 王斌;集熱蓄熱墻傳熱過程及優(yōu)化設(shè)計(jì)研究[D];西安建筑科技大學(xué);2012年

,

本文編號(hào):2046969

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/sgjslw/2046969.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶8133d***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com