模擬地下工程應(yīng)力環(huán)境梯度加載下的巖爆機(jī)理研究
本文選題:高地應(yīng)力 + 側(cè)壓力系數(shù); 參考:《武漢理工大學(xué)》2013年博士論文
【摘要】:隨著礦業(yè)工程、水電工程和隧道工程逐步向深部巖體發(fā)展,深部硬脆巖體開挖擾動(dòng)造成局部應(yīng)力集中,圍巖所受應(yīng)力梯度增大,伴隨而來(lái)的巖爆災(zāi)害也逐步增加。而對(duì)于不同應(yīng)力環(huán)境和應(yīng)力路徑下巖體開挖擾動(dòng)產(chǎn)生應(yīng)力梯度對(duì)巖爆災(zāi)害的研究非常少,且目前巖爆試驗(yàn)還大多處于小尺寸試件的均布加卸載階段,為研究梯度加載對(duì)巖體受力直至發(fā)生巖爆的影響,本文通過(guò)對(duì)在地下工程不同應(yīng)力環(huán)境與應(yīng)力路徑下巖體的受力變化進(jìn)行分析,總結(jié)深部巖體開挖引起圍巖應(yīng)力場(chǎng)分布的主要形式,采用典型的應(yīng)力梯度加卸載路徑,結(jié)合自主研發(fā)的巖爆加載裝置對(duì)試件進(jìn)行室內(nèi)試驗(yàn)研究,以分析不同應(yīng)力梯度對(duì)試件產(chǎn)生巖爆的影響,并通過(guò)數(shù)值模擬與室內(nèi)試驗(yàn)驗(yàn)證的方法,系統(tǒng)研究了不同應(yīng)力梯度和應(yīng)力環(huán)境下的巖爆機(jī)理。論文主要取得以下研究成果: (1)通過(guò)對(duì)隧道開挖影響區(qū)巖體進(jìn)行應(yīng)力彈性理論解析解分析,并利用FLAC3D有限差分軟件對(duì)不同開挖深度、不同側(cè)壓力系數(shù)下的馬蹄形隧道進(jìn)行開挖模擬,得到不同開挖深度和側(cè)壓力系數(shù)下,隧道開挖引起巖體應(yīng)力梯度分布趨勢(shì),總結(jié)隧道開挖掌子面逐漸接近巖體監(jiān)測(cè)面并隨開挖進(jìn)一步推進(jìn)的過(guò)程中,測(cè)試面巖體受開挖影響的應(yīng)力梯度變化規(guī)律,推導(dǎo)出對(duì)隧道圍巖所受應(yīng)力梯度值隨開挖步驟的擬合公式。 (2)選擇滿足巖爆傾向性的相似模型材料,并通過(guò)室內(nèi)試驗(yàn)得到模型試件的基本物理力學(xué)指標(biāo)。利用自主研發(fā)的YB-A型巖爆加載裝置對(duì)大尺寸試件進(jìn)行頂部梯度加載的四組不同加卸載路徑的巖爆試驗(yàn),通過(guò)改變不同側(cè)壓力系數(shù)、單面卸載時(shí)頂部不同加載力大小,對(duì)頂部進(jìn)行不同速率加載的方式,對(duì)試件在四種加載路徑下發(fā)生巖爆時(shí),其卸載面的巖爆破壞形態(tài)進(jìn)行分析,并得出試件產(chǎn)生巖爆時(shí),其頂部所受應(yīng)力梯度大小與試件經(jīng)歷加卸載環(huán)境和加載路徑的關(guān)系。 (3)為分析試件在四種加卸載路徑下發(fā)生巖爆與試件頂部所受應(yīng)力梯度分布的影響,通過(guò)采集試件在各加載路徑中的應(yīng)變片變形數(shù)據(jù),對(duì)比試件在加卸載前后的CT成像分析,并對(duì)巖爆試驗(yàn)后的巖爆碎屑進(jìn)行分形分析,得出試件發(fā)生巖爆的過(guò)程是試件卸載面附近巖體經(jīng)歷了:試件在受加載時(shí)能量吸收-卸載面壓密-試件卸載后在其卸載面中部拉裂破壞-破裂成板的巖爆破壞過(guò)程。CT成像圖直觀地反應(yīng)出試件卸載面附近的加載壓密區(qū)和卸載后試件內(nèi)部的損傷區(qū);最后通過(guò)對(duì)巖爆碎屑的分形維數(shù)值計(jì)算,建立了巖爆烈度與試件加載路徑的關(guān)系。進(jìn)一步分析了試件在四種加卸載路徑下的巖爆特性。 (4)基于能量耗散原理,利用3DEC離散元軟件并嵌入彈性能密度的fish語(yǔ)言,計(jì)算并追蹤測(cè)點(diǎn)的彈性能密度變化的全過(guò)程,選擇與室內(nèi)試驗(yàn)相類似的加載應(yīng)力梯度對(duì)模型試件進(jìn)行加卸載模擬,以對(duì)室內(nèi)試驗(yàn)結(jié)果進(jìn)行驗(yàn)證與補(bǔ)充。模擬結(jié)果再現(xiàn)試件在高應(yīng)力梯度條件下卸載時(shí),隨著試件頂部應(yīng)力梯度的逐漸增加,試件卸載面呈局部剝落,乃至出現(xiàn)塊體噴射的巖爆過(guò)程,數(shù)值模擬試驗(yàn)與相同路徑下的室內(nèi)試驗(yàn)結(jié)果較吻合。
[Abstract]:With the mining engineering, the hydropower project and the tunnel project are gradually developing to the deep rock mass. The local stress concentration is caused by the excavation of the deep hard brittle rock mass, the stress gradient of the surrounding rock increases and the rock burst disaster increases gradually. The stress gradient is produced for rock burst disaster under different stress environment and stress path. In order to study the influence of gradient loading on rock mass to rock burst, this paper analyzes the stress changes of rock mass under the different stress environment and stress path under the underground engineering, and summarizes the surrounding rock should be caused by the deep rock excavation. The main form of the force field distribution is a typical stress gradient loading and unloading path, combined with the self developed rock burst loading device to carry out laboratory tests to analyze the effects of different stress gradient on the rock burst produced by the specimen, and the different stress gradient and stress ring are systematically studied through numerical simulation and laboratory test verification. The main achievements of the paper are as follows:
(1) through the analytical solution analysis of the stress elastic theory of the rock mass in the tunnel excavation, and using the FLAC3D finite difference software to simulate the excavation of the horseshoe tunnel under different excavation depth and different side pressure coefficient, the stress gradient distribution trend of rock mass caused by tunnel excavation under different excavation depth and side pressure coefficient is obtained, and the tunnel is summed up. In the course of the tunnel face gradually approaching the monitoring surface of rock mass and with the process of excavation further, the stress gradient change law of the rock mass affected by the excavation is tested, and the fitting formula of the stress gradient value of the tunnel surrounding rock is derived with the excavation step.
(2) select the similar model materials that meet the tendency of rock burst, and get the basic physical and mechanical indexes of the model specimens through indoor test. By using the independent YB-A type rock burst loading device, four groups of different loading and unloading paths on the top of the large size specimen are tested on the top gradient loading path. By changing the different side pressure coefficient, the single side unloading is changed. At the top of the different loading force, the top is loaded with different speed, and the rock burst failure pattern of the unloading surface is analyzed when rock burst occurs under four loading paths, and the relationship between the stress gradient on the top of the specimen and the loading and unloading environment and loading path is obtained when the specimen is produced by rock burst.
(3) in order to analyze the influence of the rock burst and the stress gradient distribution on the top of the specimen under four loading and unloading paths, the CT imaging analysis of the specimen before and after loading and unloading is compared by collecting the strain data of the strain sheet in each loading path, and the fractal analysis of the rock burst after the rock burst test is carried out, and the rock burst of the specimen is obtained. The process is that the rock mass near the unloading surface of the specimen is experienced: the.CT image of the rock burst failure process at the unloading surface after the loading is loaded by the loading - unloading surface pressure - the rock burst failure process in the middle of the unloading surface after the loading is unloaded. By calculating the fractal dimension of rock burst, the relationship between the rock burst intensity and the loading path of the specimen is established, and the rock burst characteristics of the specimen under the four loading and unloading paths are further analyzed.
(4) based on the principle of energy dissipation, using the 3DEC discrete element software and embedding the fish language of elastic energy density, the whole process of elastic energy density change is calculated and tracked, and the loading stress gradient similar to the laboratory test is used to simulate the loading and unloading of the model test parts, so as to verify and supplement the laboratory test results. With the increasing stress gradient at the top of the specimen under the high stress gradient, the unloading face of the specimen is partial peeling and even the rock burst in the block ejection. The numerical simulation test is in good agreement with the laboratory test results under the same path.
【學(xué)位授予單位】:武漢理工大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2013
【分類號(hào)】:TU45
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李長(zhǎng)洪,蔡美峰,喬蘭,王雙紅;巖石全應(yīng)力-應(yīng)變曲線及其與巖爆關(guān)系[J];北京科技大學(xué)學(xué)報(bào);1999年06期
2 楊小林,王樹仁;巖石爆破損傷斷裂的細(xì)觀機(jī)理[J];爆炸與沖擊;2000年03期
3 蔡朋;汪安全;汪斌;鄔愛(ài)清;;用能量準(zhǔn)則分析巖石應(yīng)力-應(yīng)變Ⅱ型全過(guò)程曲線的合理性[J];長(zhǎng)江科學(xué)院院報(bào);2010年03期
4 徐林生,王蘭生,李天斌;國(guó)內(nèi)外巖爆研究現(xiàn)狀綜述[J];長(zhǎng)江科學(xué)院院報(bào);1999年04期
5 徐濤,唐春安,張哲,張永彬;單軸壓縮條件下脆性巖石變形破壞的理論、試驗(yàn)與數(shù)值模擬[J];東北大學(xué)學(xué)報(bào);2003年01期
6 姜福興;楊淑華;成云海;張興民;毛仲玉;徐方軍;;煤礦沖擊地壓的微地震監(jiān)測(cè)研究[J];地球物理學(xué)報(bào);2006年05期
7 梁志勇,連凌云,石豫川;巖爆機(jī)理的統(tǒng)計(jì)損傷解釋[J];地質(zhì)災(zāi)害與環(huán)境保護(hù);2004年02期
8 周春宏;;某水電站長(zhǎng)探洞的巖爆特征[J];地質(zhì)災(zāi)害與環(huán)境保護(hù);2006年01期
9 謝和平,高峰,周宏偉,左建平;巖石斷裂和破碎的分形研究[J];防災(zāi)減災(zāi)工程學(xué)報(bào);2003年04期
10 王揮云,李忠華,李成全;基于巖石細(xì)觀損傷機(jī)制的巖爆機(jī)理研究[J];遼寧工程技術(shù)大學(xué)學(xué)報(bào);2004年02期
相關(guān)博士學(xué)位論文 前2條
1 劉立鵬;錦屏二級(jí)水電站施工排水洞巖爆問(wèn)題研究[D];中國(guó)地質(zhì)大學(xué)(北京);2011年
2 景鋒;中國(guó)大陸淺層地殼地應(yīng)力場(chǎng)分布規(guī)律及工程擾動(dòng)特征研究[D];中國(guó)科學(xué)院研究生院(武漢巖土力學(xué)研究所);2009年
,本文編號(hào):2025576
本文鏈接:http://sikaile.net/kejilunwen/sgjslw/2025576.html