混合動力挖掘機動臂能量回收單元及系統(tǒng)研究
本文選題:混合動力 + 能量回收��; 參考:《浙江大學(xué)》2013年博士論文
【摘要】:動臂能量回收是進一步降低混合動力挖掘機燃油消耗和廢氣排放的有效途徑,對改善挖掘機高能耗、高排放的現(xiàn)狀具有重要意義,相關(guān)研究還可為其它類型工程機械的能量回收提供一定的參考和借鑒。 對于混合動力挖掘機,能量回收的引入改變了動臂作業(yè)的控制模式,如何同時保證良好的節(jié)能性和操作性是當(dāng)前制約該技術(shù)實際應(yīng)用的瓶頸。為了解決該難題,論文提出了一種新型的動臂能量回收系統(tǒng)方案及工作原理:系統(tǒng)方案采用液壓馬達-發(fā)電機能量回收單元加串流節(jié)流閥結(jié)構(gòu),在工作原理上引入壓力補償?shù)乃枷?即控制發(fā)電機使其電磁轉(zhuǎn)矩自動適應(yīng)負載壓力,一方面保證節(jié)流閥前后壓差恒定且較小,進而調(diào)節(jié)其閥口開度可有效控制動臂運動,另一方面由液壓馬達-發(fā)電機單元對能量進行回收再利用;根據(jù)矢量控制發(fā)電機轉(zhuǎn)速信息和節(jié)流閥流量-壓差映射關(guān)系對節(jié)流閥壓差進行估計,并應(yīng)用于基于壓差控制的動臂能量回收系統(tǒng),實現(xiàn)了可降低成本及復(fù)雜性的無傳感器控制方案。此外,論文對影響能量回收系統(tǒng)性能的關(guān)鍵部件——液壓馬達-發(fā)電機單元進行了深入研究:針對能量回收發(fā)電機尺寸約束下保持高效率及低轉(zhuǎn)矩脈動的性能要求,提出了通過參數(shù)化電磁設(shè)計模型和有限元分析對其定、轉(zhuǎn)子結(jié)構(gòu)參數(shù)進行分步協(xié)同優(yōu)化的設(shè)計方法,兼顧了設(shè)計效率和準(zhǔn)確性;分別在電氣和機械層面探討了液壓馬達-發(fā)電機單元的控制,設(shè)計了反饋和前饋相結(jié)合的電流控制器和帶擾動補償?shù)霓D(zhuǎn)速控制器,保證其在轉(zhuǎn)矩和轉(zhuǎn)速模式下均具有較為理想的動態(tài)性能。論文提出的一整套動臂能量回收系統(tǒng)設(shè)計和控制方法,可同時實現(xiàn)良好的動臂操作性和能量的高效回收,有力地推動了動臂能量回收系統(tǒng)在混合動力挖掘機的實際應(yīng)用。 論文各章內(nèi)容分述如下: 第一章闡述了當(dāng)前能源緊缺、環(huán)境惡化背景下開展挖掘機動臂能量回收研究的重要意義;介紹了工程機械動臂能量回收的研究現(xiàn)狀,分析了幾種能量回收方案的特點及存在的問題;針對適用于混合動力挖掘機的電氣式能量回收系統(tǒng),介紹了液壓馬達-發(fā)電機能量回收單元的元件選型,并綜述了永磁發(fā)電機的設(shè)計和控制方法;最后提出了課題的主要研究內(nèi)容。 第二章從總體上對混合動力挖掘機動臂能量回收系統(tǒng)進行了研究。分析了系統(tǒng)作業(yè)工況特點,歸納了系統(tǒng)主要性能評價指標(biāo),包括節(jié)能性和操作性。提出了液壓馬達-發(fā)電機能量回收單元加串聯(lián)節(jié)流閥的新型系統(tǒng)結(jié)構(gòu)方案。建立了系統(tǒng)主要元器件的數(shù)學(xué)模型,分析了能量傳遞流中各個轉(zhuǎn)換環(huán)節(jié)的損耗,探討了系統(tǒng)的參數(shù)設(shè)計問題,為進一步開展元件級的研究打下了基礎(chǔ)。 第三章對能量回收發(fā)電機的設(shè)計及優(yōu)化方法展開了研究。針對能量回收發(fā)電機尺寸約束下保持高效率及低轉(zhuǎn)矩脈動的性能要求,提出了定、轉(zhuǎn)子結(jié)構(gòu)參數(shù)分步優(yōu)化的設(shè)計方法:先以結(jié)構(gòu)尺寸受限下的損耗最低為目標(biāo),基于參數(shù)化模型和粒子群算法獲得最優(yōu)的定子結(jié)構(gòu)參數(shù)和磁感應(yīng)強度分布;再以氣隙磁感應(yīng)強度的波形畸變最小為目標(biāo),利用有限元方法優(yōu)化永磁體結(jié)構(gòu)參數(shù),并保證磁感應(yīng)強度的實際分布與定子優(yōu)化結(jié)果一致。分別對電樞反應(yīng)、永磁體最大去磁、間歇性作業(yè)下的溫升進行了計算和校核。研制了能量回收發(fā)電機樣機并進行了性能和參數(shù)測試,測試結(jié)果驗證了設(shè)計及優(yōu)化方法的有效性。 第四章研究了液壓馬達-發(fā)電機能量回收單元的控制。在電氣層面研究了永磁發(fā)電機的電流控制,為了降低反電動勢的影響,設(shè)計了帶前饋補償?shù)谋壤?積分電流控制器;在機械層面研究了液壓馬達-發(fā)電機單元的轉(zhuǎn)速控制,針對液壓馬達入口壓力變化劇烈的特點,引入了擾動補償以提高系統(tǒng)的抗干擾能力。建立了相應(yīng)的仿真模型,對設(shè)計的控制方法進行了仿真研究。搭建了基于模擬加載的試驗臺架并進行了試驗研究,試驗結(jié)果表明,液壓馬達-發(fā)電機單元在轉(zhuǎn)矩和轉(zhuǎn)速模式均具有良好的控制性能,為進一步研究動臂能量回收系統(tǒng)的控制方法提供了支撐。 第五章研究了對動臂操作性具有主導(dǎo)性影響的能量回收系統(tǒng)控制方法。結(jié)合系統(tǒng)結(jié)構(gòu)和特點提出了三種控制方法:直接轉(zhuǎn)速控制,通過控制液壓馬達-發(fā)電機單元的轉(zhuǎn)速調(diào)節(jié)動臂液壓缸速度,節(jié)流閥基本處于全開狀態(tài);負載壓力控制,通過節(jié)流閥調(diào)節(jié)動臂液壓缸速度,根據(jù)負載壓力反饋確定單元的目標(biāo)轉(zhuǎn)矩;節(jié)流閥壓差控制,也通過節(jié)流閥調(diào)速,但根據(jù)節(jié)流閥壓差閉環(huán)控制確定單元的目標(biāo)轉(zhuǎn)矩。推導(dǎo)了系統(tǒng)在各種方法下的傳遞函數(shù),根據(jù)對動態(tài)性能的分析和比較,論證了節(jié)流閥壓差控制具有最優(yōu)的頻響和阻尼特性。搭建了混合動力挖掘機動臂能量回收試驗臺架并進行了試驗研究,試驗結(jié)果驗證了理論分析。 第六章進一步深入研究了基于壓差控制方法的能量回收系統(tǒng)。通過與定差減壓型壓力補償器的類比,將能量回收的原理由動臂下放過程擴展到包括提升和下放的全過程,并分析了兩種工況的可回收能量。為了避免使用額外的壓差傳感器以降低系統(tǒng)成本及復(fù)雜性,提出了利用矢量控制發(fā)電機的轉(zhuǎn)速反饋信息和節(jié)流閥的流量-壓差映射關(guān)系進行壓差估計的無傳感器控制方法,分別從穩(wěn)態(tài)和動態(tài)上論證了有/無傳感器控制的等效性。最后從操作性和節(jié)能性兩方面進行了大量試驗研究,試驗結(jié)果表明,提出的動臂能量回收系統(tǒng)及控制方法在典型作業(yè)過程中具有良好的動態(tài)性能,能夠適應(yīng)各種動作需求;實際回收能量與理論分析一致,總回收效率在40%-50%之間,且具有一定改善空間。 第七章總結(jié)了論文的主要研究工作和創(chuàng)新點,并對課題后續(xù)的研究方向進行了展望。
[Abstract]:The energy recovery of the moving arm is an effective way to further reduce the fuel consumption and exhaust emission of the hybrid power excavator. It is of great significance to improve the current situation of high energy consumption and high emission of the excavator. The related research can also provide some reference and reference for the energy recovery of other types of engineering machinery.
For the hybrid excavator, the introduction of energy recovery changes the control mode of the operation of the arm. How to ensure good energy saving and operability is the bottleneck of the practical application of the technology at the same time. In order to solve this problem, a new scheme and working principle of the energy recovery system of the moving arm is proposed in this paper: the system scheme is adopted. The hydraulic motor - generator energy recovery unit and the flow throttle valve structure, the idea of pressure compensation is introduced in the working principle, that is to control the generator to automatically adapt the electromagnetic torque to the load pressure. On the one hand, the pressure difference between the front and back of the throttle valve is constant and small, and then the opening of the valve can be adjusted to control the movement of the moving arm effectively, on the other hand, the liquid is controlled by the liquid. The pressure motor generator unit reuses the energy, and estimates the pressure difference of the throttle valve based on the vector control of the generator speed information and the flow pressure difference mapping relation, and applies it to the energy recovery system based on the pressure difference control, which can reduce the cost and complexity of the sensorless control scheme. In this paper, the key component of the energy recovery system, the hydraulic motor - generator unit, is studied in this paper. In view of the performance requirements of the energy recovery generator with high efficiency and low torque ripple, the parameters of the rotor structure are divided by the parameterized electromagnetic design model and the finite element analysis. The design method of step cooperative optimization has taken into account the efficiency and accuracy of the design. The control of the hydraulic motor generator unit is discussed at the electrical and mechanical aspects. The current controller combined with feedback and feedforward is designed and the speed controller with disturbance compensation is designed to ensure that it has more ideal dynamics in the mode of torque and rotational speed. A set of design and control methods for the energy recovery system of the moving arm are proposed in this paper, which can simultaneously achieve a good recovery of the manipulability and energy of the arm, and effectively promote the practical application of the energy recovery system of the arm in the hybrid excavator.
The contents of the chapters of the paper are as follows:
The first chapter expounds the importance of the research on the energy recovery of the excavator moving arm under the background of the energy shortage and the environment deterioration, introduces the research status of the energy recovery of the engineering machinery arm, analyzes the characteristics and the existing problems of several energy recovery schemes, and aims at the electric energy recovery system suitable for the hybrid power excavator. The component selection of the energy recovery unit of the hydraulic motor - generator is introduced, and the design and control methods of the permanent magnet generator are summarized, and the main contents of the research are put forward at the end.
In the second chapter, the energy recovery system of the dynamic arm of the hybrid excavator is studied. The performance characteristics of the system are analyzed, and the main performance evaluation indexes of the system are summarized, including energy saving and operation. A new system structure scheme for the hydraulic motor generator energy recovery unit and the series throttle valve is proposed. The mathematical model of the main components is used to analyze the loss of each link in the energy transfer flow, and the parameter design of the system is discussed, which lays a foundation for the further research of the component level.
In the third chapter, the design and optimization method of energy recovery generator is studied. Aiming at the performance requirements of keeping high efficiency and low torque ripple under the constraints of energy recovery generator, a design method is put forward to optimize the parameters of the rotor structure step by step. First, the minimum loss of the structure and size is the target, and the parameterized model is based on the model. The optimal stator structure parameters and magnetic induction intensity distribution are obtained by the particle swarm optimization (PSO), and the minimum wave distortion of the air gap magnetic induction intensity is the target. The finite element method is used to optimize the structure parameters of the permanent magnet, and the actual distribution of the magnetic induction intensity is consistent with the stator optimization results. The temperature rise under the intermittent operation is calculated and checked. The prototype of the energy recovery generator is developed and the performance and parameters are tested. The test results verify the effectiveness of the design and optimization methods.
In the fourth chapter, the control of the energy recovery unit of the hydraulic motor generator is studied. The current control of the permanent magnet generator is studied at the electrical level. In order to reduce the influence of the anti electromotive force, a proportional integral current controller with feed-forward compensation is designed. The speed control of the hydraulic motor generator unit is studied at the mechanical level, and the hydraulic horse is aimed at the hydraulic horse. The disturbance compensation is introduced to improve the anti-interference ability of the system. A corresponding simulation model is set up, and the simulation study of the designed control method is carried out. A test bench based on the simulated loading is built and the test results are carried out. The test results show that the torque and rotation of the hydraulic motor generator unit are in the torque and rotation. The speed mode has good control performance, which provides support for further research on the control method of the boom energy recovery system.
The fifth chapter studies the control method of the energy recovery system which has a leading influence on the manipulability of the moving arm. Combined with the structure and characteristics of the system, three control methods are proposed: direct speed control, adjusting the speed of the hydraulic cylinder by controlling the speed of the hydraulic motor generator unit, the throttle valve is basically in full open state; the load pressure control, Through the throttle valve, the speed of the hydraulic cylinder is adjusted, the target torque of the unit is determined according to the load pressure, the pressure difference of the throttle valve is controlled, and the throttle valve is also regulated by the throttle valve, but the target torque is determined according to the closed loop control of the throttle valve. The transmission function of the system in various methods is derived, and the dynamic performance is analyzed and compared. It is proved that the pressure difference control of the throttle valve has the best frequency response and damping characteristics. A test bench for the energy recovery test of the dynamic arm of the hybrid excavator is set up and the experimental results are carried out. The experimental results verify the theoretical analysis.
In the sixth chapter, the energy recovery system based on the pressure difference control method is further studied. Through the analogy with the differential pressure compensator, the principle of the energy recovery is extended from the moving arm down process to the whole process including the lifting and the lower, and the recovery energy of the two conditions is analyzed. In order to avoid the use of additional pressure difference sensing In order to reduce the cost and complexity of the system, a sensorless control method is proposed, which uses vector control feedback information of the generator and the flow pressure difference mapping relation of the throttle valve to estimate the pressure difference. The equivalence of the sensorless control is demonstrated from the steady state and the dynamic. Finally, the two aspects of operation and energy saving are carried out. A large number of experimental research results show that the proposed dynamic arm energy recovery system and control method have good dynamic performance in the typical operation process, and can adapt to various action requirements. The actual recovery energy is consistent with the theoretical analysis, the total recovery efficiency is between 40%-50% and has a certain improvement space.
The seventh chapter summarizes the main research work and innovation of the paper, and prospects the future research directions.
【學(xué)位授予單位】:浙江大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2013
【分類號】:TU621
【參考文獻】
相關(guān)期刊論文 前10條
1 王自強,張龍,黃燕丹;飛行控制用無刷直流電動機的優(yōu)化設(shè)計[J];北京航空航天大學(xué)學(xué)報;2004年07期
2 周新民;孫暉;;新型儲能元件綜述——超級電容及其應(yīng)用[J];變頻器世界;2009年06期
3 盧紅影;姜繼海;;液壓變壓器四象限工作特性研究[J];哈爾濱工業(yè)大學(xué)學(xué)報;2009年01期
4 劉海昌;姜繼海;;飛輪儲能型二次調(diào)節(jié)流量耦聯(lián)系統(tǒng)[J];華南理工大學(xué)學(xué)報(自然科學(xué)版);2009年04期
5 趙丁選;陳明東;戴群亮;章二平;徐春博;;油液混合動力液壓挖掘機動臂勢能回收系統(tǒng)[J];吉林大學(xué)學(xué)報(工學(xué)版);2011年S1期
6 王冬云;潘雙夏;林瀟;管成;;基于混合動力技術(shù)的液壓挖掘機節(jié)能方案研究[J];計算機集成制造系統(tǒng);2009年01期
7 王曉霞,王洪祥,潘琪;液壓技術(shù)中的節(jié)能與能量回收[J];機械工程師;1999年07期
8 張樹忠;鄧斌;曹學(xué)鵬;李磊;;挖掘機動臂流量再生與勢能回收節(jié)能系統(tǒng)研究[J];機械科學(xué)與技術(shù);2010年07期
9 楊華勇,歐陽小平,徐兵;液壓變壓器的發(fā)展現(xiàn)狀[J];機械工程學(xué)報;2003年05期
10 王慶豐;張彥廷;肖清;;混合動力工程機械節(jié)能效果評價及液壓系統(tǒng)節(jié)能的仿真研究[J];機械工程學(xué)報;2005年12期
相關(guān)博士學(xué)位論文 前3條
1 林添良;混合動力液壓挖掘機勢能回收系統(tǒng)的基礎(chǔ)研究[D];浙江大學(xué);2011年
2 張彥廷;基于混合動力與能量回收的液壓挖掘機節(jié)能研究[D];浙江大學(xué);2006年
3 肖清;液壓挖掘機混合動力系統(tǒng)的控制策略與參數(shù)匹配研究[D];浙江大學(xué);2008年
,本文編號:2005655
本文鏈接:http://sikaile.net/kejilunwen/sgjslw/2005655.html