SRC框架-RC核心筒混合結(jié)構(gòu)多目標(biāo)抗震優(yōu)化設(shè)計(jì)研究
本文選題:SRC框架-RC核心筒混合結(jié)構(gòu) + 失效模式; 參考:《西安建筑科技大學(xué)》2013年博士論文
【摘要】:SRC框架-RC核心筒混合結(jié)構(gòu)是一種新型的結(jié)構(gòu)體系,它以優(yōu)良的抗震性能和耐久性而被廣泛應(yīng)用于高層和超高層建筑中。本文采用理論建模的研究手段,對(duì)SRC框架-RC核心筒混合結(jié)構(gòu)各構(gòu)件及整體結(jié)構(gòu)進(jìn)行系統(tǒng)的優(yōu)化研究,具體研究?jī)?nèi)容如下: 1.將SRC框架梁的工程造價(jià)最小化和正截面抗彎承載力最大化定為優(yōu)化目標(biāo),并對(duì)其進(jìn)行無(wú)量綱化處理,使得多目標(biāo)的優(yōu)化問(wèn)題轉(zhuǎn)化為單目標(biāo)優(yōu)化問(wèn)題,采用線性加權(quán)法構(gòu)造評(píng)價(jià)函數(shù),,通過(guò)調(diào)整加權(quán)系數(shù)來(lái)改變兩個(gè)優(yōu)化目標(biāo)在優(yōu)化中的重要程度?紤]到SRC構(gòu)件的受力特性,在遺傳算法(GA)的編碼過(guò)程中應(yīng)用層次分析法理論對(duì)各設(shè)計(jì)變量進(jìn)行權(quán)重賦值,從而建立層次分析GA算法。綜合考慮各種約束條件,運(yùn)用層次分析GA算法實(shí)施SRC框架梁的優(yōu)化設(shè)計(jì),并通過(guò)優(yōu)化設(shè)計(jì)實(shí)例證實(shí)文中所采用的優(yōu)化方法和設(shè)計(jì)思路是有效、可行的。 2.將SRC框架柱的工程造價(jià)最小化和斜截面抗剪承載力最大化定為優(yōu)化目標(biāo),并在理論建模過(guò)程中將粘結(jié)滑移試驗(yàn)所得的本構(gòu)方程應(yīng)用于數(shù)值模型?紤]到SRC構(gòu)件的混凝土截面尺寸和內(nèi)埋型鋼截面尺寸為主要優(yōu)化設(shè)計(jì)變量,首先運(yùn)用優(yōu)化準(zhǔn)則法(OC)確定構(gòu)件混凝土截面尺寸,以達(dá)顯著縮小解空間的搜索范圍并提高計(jì)算效率之目標(biāo),進(jìn)而確定型鋼截面尺寸、縱筋直徑與數(shù)量等設(shè)計(jì)參數(shù)的取值范圍;谝陨纤悸,在優(yōu)化準(zhǔn)則法中,根據(jù)最優(yōu)性準(zhǔn)則Kuhn-Tucker條件推導(dǎo)出SRC框架柱混凝土截面尺寸的迭代公式,并將其與層次分析遺傳算法相結(jié)合,從而建立了層次分析OC-GA算法。綜合考慮各種約束條件,運(yùn)用層次分析OC-GA算法實(shí)施SRC框架柱的優(yōu)化設(shè)計(jì),優(yōu)化設(shè)計(jì)實(shí)例表明文中所采用的優(yōu)化方法是有效、可行的。 3.將SRC框架的工程造價(jià)及結(jié)構(gòu)層間位移差最小定為優(yōu)化目標(biāo),并根據(jù)SRC框架結(jié)構(gòu)在不同受力階段各類構(gòu)件的受力特性,提出兩階段優(yōu)化設(shè)計(jì)的思路:小震作用下,認(rèn)為混凝土處于開(kāi)裂的臨近狀態(tài),假定鋼材未發(fā)揮作用,僅有混凝土發(fā)揮作用,據(jù)此對(duì)結(jié)構(gòu)構(gòu)件的截面尺寸與混凝土用量進(jìn)行優(yōu)化;在中震及大震作用下,對(duì)滿足結(jié)構(gòu)性能要求的鋼材用量進(jìn)行優(yōu)化。綜合考慮各種約束條件,運(yùn)用層次分析OC-GA算法實(shí)施SRC框架的抗震優(yōu)化設(shè)計(jì),并通過(guò)優(yōu)化設(shè)計(jì)實(shí)例證實(shí)文中所采用的優(yōu)化思路是有效、可行的。 4.以SRC框架-RC核心筒混合結(jié)構(gòu)的失效模式為研究背景,通過(guò)引入損傷函數(shù),將結(jié)構(gòu)的工程造價(jià)和損傷量最小定為優(yōu)化目標(biāo),并根據(jù)建筑結(jié)構(gòu)“三水準(zhǔn)”抗震設(shè)防的目標(biāo)要求,以及結(jié)構(gòu)在不同受力階段各類構(gòu)件的受力特點(diǎn),提出三水準(zhǔn)優(yōu)化設(shè)計(jì)的方法:小震作用下,僅對(duì)RC剪力墻和SRC框架梁、柱構(gòu)件的混凝土用量進(jìn)行優(yōu)化;中震作用下,框架與剪力墻處于協(xié)同工作狀態(tài),據(jù)此對(duì)整個(gè)結(jié)構(gòu)滿足層間位移差最小之目標(biāo)的鋼材用量進(jìn)行優(yōu)化;大震作用下,結(jié)構(gòu)處于塑性狀態(tài),剪力墻基本退出工作,據(jù)此對(duì)滿足結(jié)構(gòu)損傷值最小之目標(biāo)的鋼材用量進(jìn)行進(jìn)一步的優(yōu)化。從而將一個(gè)多目標(biāo)優(yōu)化問(wèn)題轉(zhuǎn)化為多個(gè)單目標(biāo)優(yōu)化問(wèn)題求解。綜合考慮各種約束條件,運(yùn)用層次分析OC-GA算法實(shí)施SRC框架-RC核心筒混合結(jié)構(gòu)失效模式三水準(zhǔn)的優(yōu)化設(shè)計(jì)。通過(guò)優(yōu)化實(shí)例證實(shí)文中所采用的優(yōu)化設(shè)計(jì)思路是有效、可行的。 5.基于投資-效益準(zhǔn)則的全壽命優(yōu)化理論,在結(jié)構(gòu)最優(yōu)設(shè)防烈度優(yōu)化設(shè)計(jì)階段引入分災(zāi)的概念設(shè)計(jì),從而建立基于全壽命分災(zāi)優(yōu)化設(shè)計(jì)的數(shù)學(xué)模型,并通過(guò)優(yōu)化實(shí)例證實(shí)文中所采用的優(yōu)化設(shè)計(jì)思路是有效、可行的;進(jìn)而,按最優(yōu)設(shè)防烈度進(jìn)行優(yōu)化設(shè)計(jì)階段引入失效模式優(yōu)化理論,建立基于失效模式的SRC框架-RC核心筒混合結(jié)構(gòu)全壽命分災(zāi)優(yōu)化設(shè)計(jì)的數(shù)學(xué)模型。
[Abstract]:The SRC frame -RC core tube mixed structure is a new type of structure system. It is widely used in high rise and super high rise buildings for its excellent seismic performance and durability. In this paper, the research method of theoretical modeling is adopted to optimize the system of the components and the whole structure of the mixed structure of the -RC core tube of the SRC frame, and the specific research contents are studied. As follows:
1. the minimization of the cost of the SRC frame beam and the maximum bending bearing capacity of the cross section are determined as the optimization goal, and the dimensionless treatment is carried out to make the optimization problem of the multi-objective transformation into a single objective optimization problem. The linear weighting method is used to construct the evaluation function, and the optimization of the two optimization targets is changed by adjusting the weighting coefficient. Taking into account the stress characteristics of SRC components, the analytic hierarchy process (AHP) theory is applied to the weight assignment of each design variable in the genetic algorithm (GA) coding process, thus the hierarchical analysis GA algorithm is established. The optimization design of the SRC frame beam is carried out by the analytic hierarchy process GA algorithm, and the design example is optimized by using the analytic hierarchy process (AHP) algorithm. It is proved that the optimization method and design idea adopted in this paper are effective and feasible.
2. the minimization of the construction cost and the maximum shear capacity of the oblique section of the SRC frame column is determined as the optimization goal. The constitutive equation obtained by the bond slip test is applied to the numerical model in the theoretical modeling process. Considering that the size of the concrete section of the SRC component and the embedded steel section length are the main optimal design variables, the first use of the optimization is to apply the optimal design variables. The size of the concrete section of the component is determined by OC, so as to reduce the search scope of the solution space and improve the calculation efficiency, and then determine the range of the design parameters, such as the size of the steel section, the diameter and the quantity of the longitudinal reinforcement. Based on the above thought, the SRC is derived according to the Kuhn-Tucker conditions of the optimality criterion. The iterative formula of the concrete section size of the frame column is combined with the analytic hierarchy process genetic algorithm (AHP), thus the analytic hierarchy process (OC-GA) algorithm is established. The optimization design of the SRC frame column is implemented by the comprehensive consideration of various constraints and the AHP OC-GA algorithm. The optimization method used in the design example table is effective and feasible.
3. according to the minimum displacement difference between the construction cost and the structure layer of the SRC frame as the optimization target, and according to the stress characteristics of the various components of the SRC frame structure at different stage of stress, the idea of the optimization design is put forward. Under the action of small earthquakes, it is considered that the concrete is in the near state of the cracking, assuming that the steel is not exerting its function and only the concrete is exerting. On the basis of this, the section size and the amount of concrete are optimized. Under the action of medium earthquake and large earthquake, the amount of steel which meets the requirements of structural performance is optimized. The seismic optimization design of the SRC frame is implemented by the analytic hierarchy process (OC-GA) algorithm. The optimization idea adopted is effective and feasible.
4. taking the failure mode of the SRC frame -RC core tube mixed structure as the research background, by introducing the damage function, the minimum construction cost and the minimum damage amount are determined as the optimization target, and according to the target requirements of the seismic fortification of the building structure "three level", and the structure's stress characteristics at different stages of the structure, the three water quasi optimum is put forward. Under the action of small earthquakes, only the concrete dosage of RC shear wall and SRC frame beam and column member is optimized. Under the action of medium earthquake, the frame and shear wall are in cooperative working state, and the steel quantity of the whole structure satisfying the minimum displacement difference between layers is optimized. Under the action of large earthquakes, the structure is in plastic state. The shear wall is basically withdrawn from the work, and then the steel consumption of the target which satisfies the minimum damage value of the structure is further optimized. Thus a multi objective optimization problem is transformed into multiple single objective optimization problems. A comprehensive consideration of various constraints and the application of the analytic hierarchy process (AHP) OC-GA algorithm to the failure of the SRC framework -RC core tube mixed structure failure are carried out. The optimized design of the model is verified by an example. The optimization design ideas adopted in this paper are effective and feasible.
5. based on the whole life optimization theory of the investment benefit criterion, the concept design of the disaster division is introduced in the optimal design phase of the structural fortification intensity, and the mathematical model based on the life span optimization design is established, and the optimization design idea is proved to be effective and feasible. In the optimization design stage, the failure mode optimization theory is introduced, and the mathematical model of the SRC framework -RC core tube mixed structure full life disaster reduction optimization design based on failure mode is established.
【學(xué)位授予單位】:西安建筑科技大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2013
【分類號(hào)】:TU973.31
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 曾磊;查春光;鄭山鎖;;基于混合懲罰函數(shù)法的型鋼混凝土框架柱優(yōu)化設(shè)計(jì)[J];四川建筑科學(xué)研究;2010年02期
2 王光遠(yuǎn),譚東耀,王東煒;失效相關(guān)工程系統(tǒng)的可靠度[J];地震工程與工程振動(dòng);1992年01期
3 王光遠(yuǎn),朱靖華;地震作用下串、并聯(lián)工程系統(tǒng)中結(jié)構(gòu)失效相關(guān)性的近似處理[J];地震工程與工程振動(dòng);1998年04期
4 呂大剛;于曉輝;宋鵬彥;張鵬;王光遠(yuǎn);;抗震結(jié)構(gòu)最優(yōu)設(shè)防水平?jīng)Q策與全壽命優(yōu)化設(shè)計(jì)的簡(jiǎn)化易損性分析方法[J];地震工程與工程振動(dòng);2009年04期
5 李剛,程耿東;基于分災(zāi)模式的高層結(jié)構(gòu)抗震優(yōu)化設(shè)計(jì)[J];大連理工大學(xué)學(xué)報(bào);2000年04期
6 李剛,程耿東;基于投資-效益準(zhǔn)則的現(xiàn)有結(jié)構(gòu)抗震加固策略[J];大連理工大學(xué)學(xué)報(bào);2003年04期
7 李剛,程耿東;基于投資-效益準(zhǔn)則的結(jié)構(gòu)目標(biāo)性能水平[J];大連理工大學(xué)學(xué)報(bào);2005年02期
8 李剛,程耿東;基于分災(zāi)模式的結(jié)構(gòu)防災(zāi)減災(zāi)設(shè)計(jì)概念的再思考[J];大連理工大學(xué)學(xué)報(bào);1998年01期
9 程耿東,蔡悅,蔡文學(xué);基于可靠度的結(jié)構(gòu)優(yōu)化模型和“強(qiáng)柱弱梁”設(shè)計(jì)[J];大連理工大學(xué)學(xué)報(bào);1998年06期
10 沈霄鶴;歐進(jìn)萍;;超高層巨型鋼框架結(jié)構(gòu)失效模式分析[J];東南大學(xué)學(xué)報(bào)(自然科學(xué)版);2009年S2期
相關(guān)博士學(xué)位論文 前3條
1 張亮;型鋼高強(qiáng)高性能混凝土柱的受力性能及設(shè)計(jì)計(jì)算理論研究[D];西安建筑科技大學(xué);2011年
2 陸海燕;基于遺傳算法和準(zhǔn)則法的高層建筑結(jié)構(gòu)優(yōu)化設(shè)計(jì)研究[D];大連理工大學(xué);2009年
3 寧響亮;結(jié)構(gòu)振動(dòng)控制的多目標(biāo)優(yōu)化和智能模糊控制[D];哈爾濱工業(yè)大學(xué);2010年
本文編號(hào):1889224
本文鏈接:http://sikaile.net/kejilunwen/sgjslw/1889224.html