附建式地下室抗浮穩(wěn)定性設(shè)計(jì)研究
本文選題:附建式地下室 + 上浮失效 ; 參考:《武漢理工大學(xué)》2013年碩士論文
【摘要】:為充分利用城市緊缺的土地資源,大量帶有高層建筑的地下室正處于建設(shè)的高峰期。地下室越埋越深,由此引發(fā)了不少上浮失效事故。對近幾年的抗浮失效事故統(tǒng)計(jì)發(fā)現(xiàn),附建式地下室上浮失效事故的比例較高,主要集中在下沉庭院、地下廣場等上部荷載和剛度較小的部位。國家規(guī)范對抗浮設(shè)計(jì)并沒有具體的規(guī)定,各行業(yè)規(guī)范對抗浮設(shè)計(jì)中的一些問題也不統(tǒng)一。鑒于此,本文展開了系統(tǒng)地研究,主要研究內(nèi)容和結(jié)論如下: 1.對地下室上浮的三種失效形態(tài)進(jìn)行了統(tǒng)計(jì)分析,發(fā)現(xiàn)上浮破壞事故中局部上浮、整體上浮所占比例較少,絕大多數(shù)由局部整體上浮引起。針對三種失效形態(tài),在設(shè)計(jì)方法上進(jìn)行了研究。國家規(guī)范對局部上浮有對應(yīng)設(shè)計(jì)公式,采用極限狀態(tài)設(shè)計(jì)法;局部、局部整體抗浮設(shè)計(jì)多根據(jù)地方經(jīng)驗(yàn),采用安全系數(shù)法。地下水浮力是一種特殊荷載,抗浮設(shè)防水位下的浮力有較高的安全儲備,在抗浮設(shè)計(jì)中作為標(biāo)準(zhǔn)值使局部抗浮的安全度高于整體抗浮和局部整體抗浮。 2.通過對中歐規(guī)范的比較,提出了采用抗浮樁、錨桿下的穩(wěn)定性設(shè)計(jì)公式,并對安全系數(shù)的取值進(jìn)行了討論,指出我國規(guī)范在任何情況下采用同一安全系數(shù)不合理。提出當(dāng)抗浮設(shè)防水位的誤差較小時,抗浮樁、錨桿的抗浮穩(wěn)定性安全系數(shù)Kf宜取低值,當(dāng)抗浮設(shè)防水位預(yù)測較困難時Kf宜取高值,建議取值區(qū)間為1.52-1.90。 3.結(jié)合實(shí)際工程,對將附建地下室分割為若干獨(dú)立單元再進(jìn)行局部整體穩(wěn)定性驗(yàn)算的方法進(jìn)行了研究。通過有限元分析發(fā)現(xiàn),按此方法進(jìn)行設(shè)計(jì)不僅存在安全隱患而且很不經(jīng)濟(jì)。下沉庭院是附建式地下室的抗浮薄弱部位,抗浮設(shè)計(jì)時應(yīng)加強(qiáng)其剛度。 4.附建式地下室局部整體抗浮穩(wěn)定性設(shè)計(jì)宜考慮上部結(jié)構(gòu)與抗浮構(gòu)件共同作用的影響,考慮這種影響后錨桿所受拉力比按常規(guī)方式所計(jì)算的拉力減小約20%-30%。 5.對附建式地下室的局部整體抗浮穩(wěn)定設(shè)計(jì)從以下兩個方面進(jìn)行了優(yōu)化:在下沉庭院底板下增加抗浮錨桿的數(shù)量加強(qiáng)薄弱部位的剛度,在主樓和地下室外墻周邊剛度較大范圍內(nèi)減少抗浮錨桿的數(shù)量。通過優(yōu)化不僅提高了結(jié)構(gòu)在浮力作用下的可靠性,同時減小了錨桿的數(shù)量和長度,減小了底板的變形和內(nèi)力,達(dá)到了經(jīng)濟(jì)和安全的目的。
[Abstract]:In order to make full use of scarce land resources in the city, with a large number of high-rise building basement is at the peak of construction. The basement deeper, which caused a lot of floating failure accidents found on anti floating. Failure accident statistics in recent years, underground chamber floating failure accident higher proportion, mainly in the sunken garden, underground square upper load and stiffness of smaller parts. The national standard of anti floating design and no specific requirements, the industry norms against some problems in the design of floating is not uniform. In view of this, this paper carried out systematic research, the main research contents and conclusions are as follows:
Three kinds of failure form up 1. to the basement for statistical analysis, found that local floating floating damage accidents, the overall floating proportion is less, the vast majority caused by local integral floating. According to the three kinds of failure form, were studied in the design method. The national standard of local floating corresponding design formula, using the limit state design method; local, local overall anti floating design based on local experience, the safety coefficient method. The water buoyancy is a special load, anti floating waterlevel under the buoyancy of high security reserves, the anti floating design as the standard value of the local anti floating safety degree is higher than the overall and local overall anti floating anti floating.
2. based on the European standard, proposed the use of anti floating pile, the stability design formula under the anchor, and the safety coefficient are discussed, pointed out that China's specification in any case with the same safety factor is not reasonable. The error is smaller when the water level for prevention, anti floating pile, anchor the anti floating stability safety coefficient Kf should be low value, when the anti floating waterlevel forecast is difficult when Kf should be of high value, suggests that the value range of 1.52-1.90.
3. combined with the actual project, conducted the research on the construction of the basement will be attached to several independent unit segmentation method for computing local overall stability. Through the finite element analysis, was designed by this method is not only a security risk and is not economic. The sunken garden underground chamber is the anti floating weak parts, anti floating the design should strengthen its stiffness.
4., the overall anti floating stability design of the attached basement should consider the interaction between the upper structure and the floating members. Considering the influence, the pulling force of the anchor will be reduced by about 20%-30%. compared with the conventional way.
On the 5. part of the whole underground chamber of the anti floating stability design from the following two aspects: optimization to increase the number of anti floating anchor in the sunken garden floor to strengthen the weak parts of the stiffness, the number of anti floating anchor in the main building and the basement wall surrounding the larger stiffness range. By optimizing not only to improve the reliability of the structure under the effect of buoyancy, while reducing the number and length of anchor, reduce the deformation and internal force of the floor, to achieve the economic and security purposes.
【學(xué)位授予單位】:武漢理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2013
【分類號】:TU92
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 袁正如;;地下工程抗浮設(shè)計(jì)中的幾個問題[J];地下空間與工程學(xué)報;2007年03期
2 楊瑞清,朱黎心;地下建筑結(jié)構(gòu)設(shè)計(jì)和施工設(shè)防水位的選定與抗浮驗(yàn)算的探討[J];工程勘察;2001年01期
3 郭生元;凌浩美;丁勇;胡忠海;;江西某(高校)體育館建筑物抗浮失事分析[J];工程勘察;2009年07期
4 陳科榮;廈門世貿(mào)中心地下室上浮原因與抗浮錨桿基礎(chǔ)加固措施[J];工程質(zhì)量;2002年05期
5 邱向榮,鄧高,黃平安;地下水浮力計(jì)算的若干問題探討[J];廣東土木與建筑;2004年11期
6 鄺世杰;;地下室鋼筋混凝土無梁底板的設(shè)計(jì)研究與應(yīng)用[J];廣東土木與建筑;2006年10期
7 張?jiān)?葉國祥;肖德周;鄧孝祥;;某高層建筑基礎(chǔ)及地下室底板結(jié)構(gòu)的優(yōu)化設(shè)計(jì)[J];廣東土木與建筑;2008年03期
8 徐春國;地下室上浮開裂事故的鑒定與加固處理[J];建筑結(jié)構(gòu);2002年11期
9 王建勝,孫明川,賈金青,鄭衛(wèi)鋒;某大型地下建筑抗浮錨桿的設(shè)計(jì)[J];建筑結(jié)構(gòu);2004年09期
10 秦明德;薛微;劉延海;;高低跨建筑物漂浮事故處理及抗浮措施[J];建筑結(jié)構(gòu);2010年S1期
相關(guān)博士學(xué)位論文 前1條
1 張彬;深基坑水土壓力共同作用試驗(yàn)研究與機(jī)理分析[D];武漢大學(xué);2004年
,本文編號:1760115
本文鏈接:http://sikaile.net/kejilunwen/sgjslw/1760115.html